A Home-Based Educational Intervention Improves Patient Activation Measures and Diabetes Health Indicators among Zuni Indians

Vallabh O Shah, Casey Carroll, Ryan Mals, Donica Ghahate, Jeanette Bobelu, Phillip Sandy, Kathleen Colleran, Ronald Schrader, Thomas Faber, Mark R Burge, Vallabh O Shah, Casey Carroll, Ryan Mals, Donica Ghahate, Jeanette Bobelu, Phillip Sandy, Kathleen Colleran, Ronald Schrader, Thomas Faber, Mark R Burge

Abstract

Introduction: One in three people will be diagnosed with diabetes by 2050, and the proportion will likely be higher among Native Americans. Diabetes control is currently suboptimal in underserved populations despite a plethora of new therapies. Patient empowerment is a key determinant of diabetes control, but such empowerment can be difficult to achieve due to resource limitation and cultural, language and health literacy barriers. We describe a home-based educational intervention using Community Health Representatives (CHRs), leading to improvement in Patient Activation Measures scores and clinical indicators of diabetes control.

Methods: Sixty participants with type 2 diabetes (T2D) completed a baseline evaluation including physical exam, Point of Care (POC) testing, and the Patient Activation Measure (PAM) survey. Participants then underwent a one hour group didactic session led by Community Health Representatives (CHRs) who subsequently carried out monthly home-based educational interventions to encourage healthy lifestyles, including diet, exercise, and alcohol and cigarette avoidance until follow up at 6 months, when clinical phenotyping and the PAM survey were repeated.

Results: PAM scores were increased by at least one level in 35 (58%) participants, while 24 participants who started at higher baseline score did not change. Six months after intervention, mean levels of A1C decreased by 0.7 ± 1.2%; fasting blood glucose decreased by 24.0 ± 38.0 mg/dl; BMI decreased by 1.5 ± 2.1 kg/m2; total cholesterol decreased by 12.0 ± 28.0 mg/dl; and triglycerides decreased by 52.0 ± 71.0 mg/dl. All of these changes were statistically significant (p < 0.05).

Conclusion: This six month, CHR led and community-oriented educational intervention helps inform standards of practice for the management of diabetes, engages diabetic populations in their own care, and reduces health disparities for the underserved population of Zuni Indians.

Trial registration: ClinicalTrials.gov NCT02339311.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. Pragmatic trial of educational intervention—CONSORT…
Fig 1. Pragmatic trial of educational intervention—CONSORT Participant Flow Chart – Study Design.
Fig 2. Agreement plots (n = 60).
Fig 2. Agreement plots (n = 60).
For each clinical parameter, the patient’s value at baseline screening (time 1) is on the horizontal axis and the 6-month follow-up value (time 2) is on the vertical axis. The plotted line is the line of perfect agreement between times 1 and 2. Points below the line represent a decrease from time 1 to time 2, while points above the line represent an increase from time 1 to time 2.
Fig 3. Regression analysis showing changes in…
Fig 3. Regression analysis showing changes in clinical parameters vs. changes in PAM levels (n = 60).
For each clinical parameter the change in PAM level from baseline to 6 months is depicted on the horizontal axis and change in the clinical parameter from baseline to 6 months is depicted on the vertical axis. Reported values are Spearman’s rho (nonparametric correlation coefficient), and the corresponding p-value (calculated on original, not jittered values). A more sophisticated regression analysis adjusting for age, gender and baseline values had similar p-values and is not shown.

References

    1. Center for Disease Control 2010. Available: . Accessed 6 January 2014.
    1. Carter J, Horowitz R, Wilson R, Sava SD, Pomeroy S, Dorothy G. Tribal Differences in Diabetes: Prevalence Among American Indians in New Mexico. Public Health Reports. 1989;104 (6): 665–669.
    1. Jousilahti P, Tuomilehto J, Korhonen HJ, Vartiainen E, Puska P, Nissinen A. Trends in CVD Risk Factor Clustering. Preventive Medicine. 1994;23: 6–14.
    1. Diabetes Prevention Program Research Group. Reduction in the incidence of Type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346: 393–403.
    1. Shah VO, Ghahate DM, Bobelu J, Sandy P, Newman S, Helitzer DL, et al. Identifying Barriers to Healthcare to Reduce Health Disparity in Zuni Indians Using Focus Group Conducted by Community Health Workers. Clin Trans Sci. 2014;7: 6–11.
    1. Shah V, Narva A, Stidley C, Tentori F, Welty TK, MacCluer JW, et al. Epidemic of Diabetic and Non-Diabetic Renal Disease in Zuni Indians. J of American Society of Nephrology.2003;14 (5): 1320–1329.
    1. Scavini M, Stidley CA, Shah VO, Narva AS, Tentori F, Kessler DS, et al. Prevalence of Diabetes is higher among Female than Male Zuni Indians: Diabetes among Zuni Indians. Diabetes Care. 2003;26 (1): 55–60.
    1. Newman S, Cheng T, Ghahate DM, Bobelu J, Sandy P, Faber T, et al. Assessing Knowledge and Attitudes of Diabetes in Zuni Indians using a Culture-Centered Approach. PLoS One. 2014;11;9(6): e99614 10.1371/journal.pone.0099614
    1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33(Suppl 1): S62–93. 10.2337/dc10-S062
    1. Colleran K, Harding E, Kipp BJ, Zurawski A, MacMillan B, Jelinkova L, et al. Building capacity to reduce disparities in diabetes: training community health workers using an integrated distance learning model, Diabetes Educ. 2012;38(3): 386–96. 10.1177/0145721712441523
    1. Evert AB, Boucher JL, Cypress M, Dunbar SA, Franz MJ, Mayer EJ, et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care. 2013;36(11): 3821–42. 10.2337/dc13-2042
    1. Ackermann RT, Marrero DG. Adapting the Diabetes Prevention Program Lifestyle Intervention for Delivery in the Community. The Diabetes Educator. 2007;33: 69–71.
    1. Marra MV, Boyar AP. Position of the American Dietetic Association: nutrient supplementation. J Am Diet Assoc. 2009;109(12): 2073–85
    1. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6): 393–403.
    1. West R, Edwards M, Hajek P. A randomized controlled trial of a "buddy" systems to improve success at giving up smoking in general practice. Addiction. 1998;93(7): 1007–1011.
    1. Wing RR, Jeffery RW. Benefits of recruiting participants with friends and increasing social support for weight loss and maintenance. Journal of Consulting & Clinical Psychology. 1999;67(1): 132–138.
    1. Wallace JP, Raglin JS, Jastremski CA. Twelve month adherence of adults who joined a fitness program with a spouse vs without a spouse. Journal of Sports Medicine & Physical Fitness. 1995;35(3): 206–213.
    1. Unger JB, Johnson CA. Social relationships and physical activity in health club members. American Journal of Health Promotion. 1995;9(5): 340–343.
    1. Ball K, Bauman A, Leslie E, Owen N. Perceived environmental aesthetics and convenience and company are associated with walking for exercise among Australian adults. Preventive Medicine. 2001;33(5): 434–440.
    1. Hibbard JH, Mahoney ER, Stockard J, Tusler M. Development and testing of a short form of the patient activation measure. Health Serv Res. 2005;40(6 Pt 1): 1918–30.
    1. Hibbard JH, Greene J. What The Evidence Shows About Patient Activation: Better Health Outcomes And Care Experiences; Fewer Data On Costs. Health Affairs. 2013;32(2):207–214. 10.1377/hlthaff.2012.1061
    1. Hibbard JH, Mahoney ER, Stock R, Tusler M. Do Increases in Patient Activation Result in Improved Self-Management Behaviors? Health Services Research. 2007;42(4):1443–1463.
    1. Parchman ML, Zeber JE, Palmer RF. Participatory Decision Making, Patient Activation, Medication Adherence, and Intermediate Clinical Outcomes in Type 2 Diabetes: A STARNet Study. The Annals of Family Medicine. 2010;8(5):410–417.
    1. Rost KM, Flavin KS, Cole K, McGill JB. Change in metabolic control and functional status after hospitalization: impact of patient activation intervention in diabetic patients. Diabetes Care. 1991;14(10):881–889.
    1. Remmers C, Hibbard J, Mosen DM, Wagenfield M, Hoye RE, Jones C. Is patient activation associated with future health outcomes and healthcare utilization among patients with diabetes? The Journal of ambulatory care management. 2009;32(4):320–327. 10.1097/JAC.0b013e3181ba6e77
    1. Hibbard JH, Greene J, Overton V. Patients with lower activation associated with higher costs; delivery systems should know their patient’s scores. Health Affairs. 2013;32(2):216–222. 10.1377/hlthaff.2012.1064
    1. Patient Activation Measure (PAM) License Package. Portland, OR: Insignia Health; 2007.
    1. Moore K, Jiang L, Manson SM, Beals J, Henderson W, Pratte K, et al. Case Management to Reduce Cardiovascular Disease Risk in American Indians and Alaska Natives With Diabetes: Results From the Special Diabetes Program for Indians Healthy Heart Demonstration Project. Am J Pub Health. 2014;104:e158–e164.
    1. R Core Team 2014. A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria: Available: . Accessed 6 January 2014.
    1. Rask KJ, Ziemer DC, Kohler SA, Hawley JN, Arinde FJ, Barnes CS. Patient activation is associated with healthy behaviors and ease in managing diabetes in an indigent populations. Diabetes Education. 2009;35 (4): 622–630.
    1. Greene J, Hibbard J. Why Does Patient Activation Matter? An examination of the relationships between patient activation and health-related outcomes. Journal of General Internal Medicine.2012;27(5): 520–526. 10.1007/s11606-011-1931-2
    1. Begum N, Donald M, Ozolins IZ, Dower J. Hospital admissions, emergency department utilization and patient activation for self-management among people with diabetes. Diabetes Research and Clinical Practice. 2011;93 (2): 260–267. 10.1016/j.diabres.2011.05.031
    1. Terry PE, Fowles JB, Xi M, Harvey L. The ACTIVATE study: results from a group-randomized controlled trial comparing a traditional worksite health promotion program with an activated consumer program. American Journal of Health Promotion. 2011;26 (2): e64–73. 10.4278/ajhp.091029-QUAN-348
    1. Hibbard JH, Greene J, Tusler M. Improving the outcomes of disease management by tailoring care to the patient's level of activation. American Journal of Managed Care. 2009,15 (6): 353–360.
    1. Mayberry R, Willock RJ, Boone L, Lopez P, Qin H, Nicewander D. A High level of patient activation is observed but unrelated to glycemic control among adults With Type 2 Diabetes. Diabetes Spectrum Volume, 2010;23(3): 171–176.
    1. Mitchell SE, Gardiner PM, Sadikova E, Martin JM, Jack BW, Hibbard JH, et al. Patient activation and 30-Day post-discharge hospital utilization. Journal of General Internal Medicine. 2014;29 (2): 349–355. 10.1007/s11606-013-2647-2
    1. Williams GC, McGregor H, Zeldman A, Freedman ZR, Deci EL, Elder D. Promoting glycemic control through diabetes self-management: Evaluating a patient activation intervention. Patient Education and Counseling. 2005;56(1): 28–34.
    1. Stepleman L, Rutter MC, Hibbard J, Johns L, Wright D, Hughes M. Validation of patient activation measure in a multiple sclerosis clinic sample and implications for care. Disability and Rehabilitation. 2010;32(19): 1558–1567. 10.3109/09638280903567885
    1. Brownstein JN, Bone LR, Dennison CR, Hill MN, Kim MT, Levine DM. Community health workers as interventionists in the prevention and control of heart disease and stroke. Am J Prev Med. 2005;29(5 Suppl 1): 128–133.
    1. Thompson J, Horton C, Flores C. Advancing diabetes self-management in the Mexican American population: a community health worker model in a primary care setting. Diabet Educ. 2007;33(6): 159S–165S.
    1. Norris SL, Chowdhury FM, VanLe K, Horsley T, Brownstein JN, Jack L, et al. Effectiveness of community health workers in the care of persons with diabetes. Diabet Med. 2006;23(5): 544–556.
    1. Peterson GM, Fitzmaurice KD, Nauton M, Vial JH, Stewart K, Krum H. Impact of pharmacist-conducted home visits on the outcomes of lipid-lowering drug therapy. J Clin Pharm Ther. 2004;29: 23–30.
    1. Bo S, Rosato R, Ciccone G, Canil S, Gambino R, Poala CB, et al. Simple lifestyle recommendations and the outcomes of gestational diabetes. A 2x2 factorial randomized trial. Diabetes, obesity and metabolism. 2014; 16(10): 1032–5. 10.1111/dom.12289
    1. Cefalu WT. A “Spoonful of Sugar” and the realities of diabetes prevention! Diabetes Care. 2014;37: 906–908. 10.2337/dc14-0181

Source: PubMed

Подписаться