Prospective Interventional Cohort Study of Ocular Surface Disease Changes in Eyes After Trabecular Micro-Bypass Stent(s) Implantation (iStent or iStent inject) with Phacoemulsification

Justin A Schweitzer, Whitney H Hauser, Mitch Ibach, Brandon Baartman, Subba R Gollamudi, Andrew W Crothers, John E Linn, John P Berdahl, Justin A Schweitzer, Whitney H Hauser, Mitch Ibach, Brandon Baartman, Subba R Gollamudi, Andrew W Crothers, John E Linn, John P Berdahl

Abstract

Introduction: This study sought to assess ocular surface disease changes following cataract surgery combined with trabecular micro-bypass stent(s) implantation (iStent or iStent inject).

Methods: This prospective interventional single-arm clinical trial enrolled 47 eyes with mild-to-moderate open-angle glaucoma (OAG) on 1-4 glaucoma medications who underwent phacoemulsification and trabecular micro-bypass stent(s) implantation. Key glaucoma and ocular surface data through 3 months postoperatively included the Ocular Surface Disease Index score (OSDI), corneal/conjunctival staining (Oxford Schema), fluorescein tear break-up time (FTBUT), conjunctival hyperemia (Efron Scale), glaucoma medications, and intraocular pressure (IOP).

Results: Mean OSDI scores improved from 40.1 ± 21.6 (severe) preoperatively to 17.5 ± 15.3 (mild) at 3 months (p < 0.0001). While 73% of eyes had moderate or severe OSDI scores preoperatively, 29% had such scores at 3 months, and the OSDI score was normal in 57% of eyes versus 9% preoperatively. Mean FTBUT increased from 4.3 ± 2.4 s preoperatively to 6.4 ± 2.5 s at 3 months (p < 0.0001); mean Oxford corneal/conjunctival staining reduced from 1.4 ± 1.0 preoperatively to 0.4 ± 0.6 at 3 months (p < 0.0001); mean Efron conjunctival hyperemia score reduced from 1.4 ± 0.7 preoperatively to 1.2 ± 0.6 at 3 months (p = 0.118). The number of glaucoma medications decreased from 1.5 ± 0.9 to 0.6 ± 0.8 mean medications (60% reduction, p < 0.0001), with all eyes maintaining or reducing medications versus preoperatively and 55% of eyes becoming medication-free (versus 0% preoperatively). Mean IOP reduced from 17.4 ± 4.2 mmHg to 14.5 ± 3.2 mmHg (p < 0.0001). The safety profile was excellent.

Conclusion: Implantation of trabecular micro-bypass stent(s) (iStent or iStent inject) with cataract surgery produced significant improvements in ocular surface health, alongside significant reductions in IOP and medications.

Trial registration: ClinicalTrials.gov identifier, NCT04452279.

Keywords: Dry eye; MIGS; Medication; Ocular surface; Quality of life; Trabecular micro-bypass.

Figures

Fig. 1
Fig. 1
a Ocular Surface Disease Index (OSDI). b Oxford schema for corneal and conjunctival staining. c Efron Scale for conjunctival hyperemia. d Sample images of fluorescein tear break-up time (FTBUT) assessmenta. Footnote: aFTBUT classifications: normal, ≥ 10 s; mild to moderate, 5–9 s; severe, < 5 s
Fig. 2
Fig. 2
a Mean Ocular Surface Disease Index (OSDI) score. Preoperative vs. month 3. b Proportional analysis of OSDI score. Preoperative vs. month 3
Fig. 3
Fig. 3
a Mean fluorescein tear break-up time (FTBUT). Preoperative vs. month 3. b Mean corneal/conjunctival staining (Oxford Schema). Preoperative vs. month 3. c Mean conjunctival hyperemia (Efron score). Preoperative vs. month 3
Fig. 4
Fig. 4
a Mean number of medications. Preoperative vs. month 3. b Change in medication burden at 3 months vs. preoperativelya. Footnotes: aAt 3 months postoperatively, 100% of eyes either maintained or reduced medication burden vs. preoperatively. Preop, preoperative; Med, medication. c Proportional analysis of medication burden. Preoperative vs. month 3
Fig. 5
Fig. 5
Mean intraocular pressure (IOP). Preoperative vs. month 3

References

    1. Skalicky SE, Goldberg I, McCluskey P. Ocular surface disease and quality of life in patients with glaucoma. Am J Ophthalmol. 2012;153(1–9):e2.
    1. Stapleton F, Alves M, Bunya VY, et al. TFOS DEWS II epidemiology report. Ocul Surf. 2017;15:334–365. doi: 10.1016/j.jtos.2017.05.003.
    1. Moss SE, Klein R, Klein BE. Prevalence of and risk factors for dry eye syndrome. Arch Ophthalmol. 2000;118:1264–1268. doi: 10.1001/archopht.118.9.1264.
    1. Leung EW, Medeiros FA, Weinreb RN. Prevalence of ocular surface disease in glaucoma patients. J Glaucoma. 2008;17(5):350–355. doi: 10.1097/IJG.0b013e31815c5f4f.
    1. Mylla Boso AL, Gasperi E, Fernandes L, et al. Impact of ocular surface disease treatment in patients with glaucoma. Clin Ophthalmol. 2020;14:103–111. doi: 10.2147/OPTH.S229815.
    1. Baudouin C, Garcher C, Haouat N, et al. Expression of inflammatory membrane markers by conjunctival cells in chronically treated patients with glaucoma. Ophthalmology. 1994;101:454–460. doi: 10.1016/S0161-6420(94)31322-4.
    1. Baudouin C, Liang H, Hamard P, et al. The ocular surface of glaucoma patients treated over the long term expresses inflammatory markers related to both T-helper 1 and T-helper 2 pathways. Ophthalmology. 2008;115:109–115. doi: 10.1016/j.ophtha.2007.01.036.
    1. Tirpack AR, Vanner E, Parrish J, et al. Dry eye symptoms and ocular pain in veterans with glaucoma. J Clin Med. 2019;8:1076. doi: 10.3390/jcm8071076.
    1. Fechtner RD, Godfrey DG, Budenz D, et al. Prevalence of ocular surface complaints in patients with glaucoma using topical intraocular pressure-lowering medications. Cornea. 2010;29:618–621. doi: 10.1097/ICO.0b013e3181c325b2.
    1. Robin AL, Covert D. Does adjunctive glaucoma therapy affect adherence to the initial primary therapy? Ophthalmology. 2005;112:863–868. doi: 10.1016/j.ophtha.2004.12.026.
    1. Siani SD, Schoenfeld P, Kaulback K, et al. Effect of dosing frequency on adherence in chronic diseases. Am J Manag Care. 2009;15(6):22e33.
    1. Broadway D, Hitchings R, Grierson I. Topical antiglaucomatous therapy: Adverse effects on the conjunctiva and implications for filtration surgery. J Glaucoma. 1995;4:136. doi: 10.1097/00061198-199504000-00012.
    1. Johnson DH, Yoshikawa K, Brubaker RF, et al. The effect of long-term medical therapy on the outcome of filtration surgery. Am J Ophthalmol. 1994;117:139–148. doi: 10.1016/S0002-9394(14)73068-5.
    1. Nordmann JP, Auzanneau N, Ricard S, et al. Vision related quality of life and topical glaucoma treatment side effects. Health Qual Life Outcomes. 2003;1:75. doi: 10.1186/1477-7525-1-75.
    1. Rossi GC, Tinelli C, Pasinetti GM, et al. Dry eye syndrome-related quality of life in glaucoma patients. Eur J Ophthalmol. 2009;19:572–579. doi: 10.1177/112067210901900409.
    1. Samuelson TW, Katz LJ, Wells JM, et al. Randomized evaluation of the trabecular micro-bypass stent with phacoemulsification in patients with glaucoma and cataract. Ophthalmology. 2011;118:459–467. doi: 10.1016/j.ophtha.2010.07.007.
    1. Ferguson TJ, Berdahl JP, Schweitzer JA, et al. Clinical evaluation of a trabecular micro-bypass stent with phacoemulsification in patients with open-angle glaucoma and cataract. Clin Ophthalmol. 2016;10:1767–1773. doi: 10.2147/OPTH.S114306.
    1. Neuhann TH, Hornbeak DM, Neuhann RT, et al. Long-term effectiveness and safety of trabecular micro-bypass stent implantation with cataract surgery in patients with glaucoma or ocular hypertension: 5-year outcomes. J Cataract Refract Surg. 2019;45(3):312–320. doi: 10.1016/j.jcrs.2018.10.029.
    1. Ferguson TJ, Swan R, Ibach M, et al. Trabecular microbypass stent implantation with cataract extraction in pseudoexfoliation glaucoma. J Cataract Refract Surg. 2017;43(5):622–626. doi: 10.1016/j.jcrs.2017.02.029.
    1. Ferguson T, Swan R, Ibach M, et al. Evaluation of a trabecular microbypass stent with cataract extraction in severe primary open-angle glaucoma. J Glaucoma. 2018;27(1):71–76. doi: 10.1097/IJG.0000000000000825.
    1. Ferguson TJ, Ibach M, Schweitzer J, et al. Trabecular microbypass stent implantation with cataract extraction in pigmentary glaucoma. Clin Exp Ophthalmol. 2019 doi: 10.1111/ceo.13638.
    1. Gallardo MJ, Supnet RA. Three-year outcomes of combined trabecular micro-bypass and phacoemulsification in a predominantly Hispanic population with primary open-angle glaucoma. Clin Ophthalmol. 2019;13:869–879. doi: 10.2147/OPTH.S189071.
    1. Fechtner RD, Voskanyan L, Vold SD, et al. Five-year, prospective, randomized, multi-surgeon trial of two trabecular bypass stents versus prostaglandin for newly-diagnosed open-angle glaucoma. Ophthalmology Glaucoma. 2019;2(3):156–166. doi: 10.1016/j.ogla.2019.03.004.
    1. Samuelson TW, Sarkisian SR, Jr, Lubeck DM, for the iStent inject Study Group et al. Prospective, randomized, controlled pivotal trial of istent inject trabecular micro-bypass in primary open-angle glaucoma and cataract: two-year results. Ophthalmology. 2019;126(6):811–821. doi: 10.1016/j.ophtha.2019.03.006.
    1. Manning D. Real-world case series of iStent or iStent inject trabecular micro-bypass stents combined with cataract surgery. Ophthalmol Ther. 2019;8(4):549–561. doi: 10.1007/s40123-019-00208-x.
    1. Neuhann R, Neuhann T. Second-generation trabecular micro-bypass stent implantation: Retrospective analysis after 12- and 24-month follow-up. Eye Vis (Lond) 2020;10(7):1.
    1. Hengerer FH, Auffarth GU, Riffel C, et al. Prospective, non-randomized, 36-month study of second-generation trabecular micro-bypass stents with phacoemulsification in various types of glaucoma. Ophthalmol Ther. 2018;7(2):405–415. doi: 10.1007/s40123-018-0152-8.
    1. Hengerer FH, Auffarth GU, Riffel C, et al. Second-generation trabecular micro-bypass stents as standalone treatment for glaucoma: a 36-month prospective study. Adv Ther. 2019;36(7):1606–1617. doi: 10.1007/s12325-019-00984-9.
    1. Salimi A, Lapointe J, Harasymowycz P. One-year outcomes of second-generation trabecular micro-bypass stents (istent inject) implantation with cataract surgery in different glaucoma subtypes and severities. Ophthalmol Ther. 2019;8(4):563–575. doi: 10.1007/s40123-019-00214-z.
    1. Clement CI, Howes F, Ioannidis AS, et al. One-year outcomes following implantation of second-generation trabecular micro-bypass stents in conjunction with cataract surgery for various types of glaucoma or ocular hypertension: multicenter, multi-surgeon study. Clin Ophthalmol. 2019;13:491–499. doi: 10.2147/OPTH.S187272.
    1. Guedes RAP, Gravina DM, Lake JC, et al. One-year comparative evaluation of istent or istent inject implantation combined with cataract surgery in a single center. Adv Ther. 2019;36(10):2797–2810. doi: 10.1007/s12325-019-01067-5.
    1. Schiffman RM, Christianson MD, Jacobsen G, et al. Reliability and validity of the Ocular Surface Disease Index. Arch Ophthalmol. 2000;118(5):615–621. doi: 10.1001/archopht.118.5.615.
    1. Bron AJ, Evans VE, Smith JA. Grading of corneal and conjunctival staining in the context of other dry eye tests. Cornea. 2003;22:640–650. doi: 10.1097/00003226-200310000-00008.
    1. Efron N, Morgan PB, Katsara SS. Validation of grading scales for contact lens complications. Ophthalmic Physiol Opt. 2001;21:17–29.
    1. Wolffsohn JS, Arita R, Chalmers R, et al. TFOS DEWS II diagnostic methodology report. Ocul Surf. 2017;15:539–574. doi: 10.1016/j.jtos.2017.05.001.
    1. Agnifili L, Brescia L, Scatena B, et al. Tear Meniscus Imaging by Anterior Segment-optical Coherence Tomography in Medically Controlled Glaucoma. J Glaucoma. 2020 doi: 10.1097/IJG.0000000000001469.
    1. Begley C, Chalmers RL, Abetz L, et al. The relationship between habitual patient-reported symptoms and clinical signs among patients with dry eye of varying severity. Invest Ophthalmol Vis Sci. 2003;44:4753e61. doi: 10.1167/iovs.03-0270.
    1. Brown MT, Bussell JK. Medication adherence: WHO cares? Mayo Clin Proc. 2011;86(4):304–314. doi: 10.4065/mcp.2010.0575.

Source: PubMed

Подписаться