Non-invasive detection of hypovolemia or fluid responsiveness in spontaneously breathing subjects

Eva Zöllei, Viktória Bertalan, Andrea Németh, Péter Csábi, Ildikó László, József Kaszaki, László Rudas, Eva Zöllei, Viktória Bertalan, Andrea Németh, Péter Csábi, Ildikó László, József Kaszaki, László Rudas

Abstract

Background: In the assessment of hypovolemia the value of functional hemodynamic monitoring during spontaneous breathing is debated. The aim of our study was to investigate in spontaneously breathing subjects the changes in hemodynamic parameters during graded central hypovolemia and to test whether slow patterned breathing improved the discriminative value of stroke volume (SV), pulse pressure (PP), and their variations (SVV, PPV). In addition, we tested the alterations in labial microcirculation.

Methods: 20 healthy volunteers participated in our study. Central hypovolemia was induced by lower body negative pressure (LBNP). Continuous signals of ECG, non-invasive blood pressure and central venous pressure were recorded. During baseline and each stage of LBNP the labial microcirculation was investigated by orthogonal polarization spectral imaging, 3 minute periods of patterned breathing at 6 and 15/min respiratory rate were performed, and central venous blood gas analysis was done. Data from baseline and those of different LBNP levels were compared by analysis of variance and those of different breathing rates by t-test. Finally, we performed ROC analysis to assess the discriminative values of SV, PP, SVV and PPV.

Results: Moderate central hypovolemia induced by LBNP caused significant, clinically relevant falls in PP (p < 0.05) and SV and central venous oxygen saturation (ScvO2) (p < 0.001). The proportion of perfused vessels (p < 0.001) and microvascular flow index decreased (p < 0.05). PPV increased (p < 0.001), however the magnitude of fluctuations was greater during slow patterned breathing (p < 0.001). SVV increased only during slow patterned breathing (p < 0.001). ROC analysis confirmed the best predictive value for SV (at 56 ml cut-off AUC 0.97, sensitivity 94%, specificity 95%). Slow patterned breathing improved the discriminative value of SVV (p = 0.0023).

Conclusions: Functional hemodynamic monitoring with slow patterned breathing to control spontaneous respiration may be worthy for further study in different populations for the assessment of hypovolemia and the prediction of volume responsiveness.

Figures

Figure 1
Figure 1
Study protocol. (BP: blood pressure, CVP: central venous pressure, SaO2: arterial oxygen saturation, OPS: orthogonal polarisation spectral imaging, VBG: central venous blood gas analysis).
Figure 2
Figure 2
The typical recording of one subject at the different LBNP levels and at 6/min and 15/min patterned breathing.

References

    1. Convertino VA, Cooke WH, Holcomb JB. Arterial pulse pressure and its association with reduced stroke volume during progressive central hypovolemia. J Trauma. 2006;61:629–634. doi: 10.1097/01.ta.0000196663.34175.33.
    1. Cooke WH, Salinas J, Convertino VA, Ludwig DA, Hinds D, Duke JH, Moore FA, Holcomb JB. Heart rate variability and its association with mortality in prehospital trauma patients. J Trauma. 2006;60:363–370. doi: 10.1097/01.ta.0000196623.48952.0e.
    1. Huang CC, Fu JY, Hu HC, Kao KC, Chen NH, Hsieh MJ, Tsai YH. Prediction of fluid responsiveness in acute respiratory distress syndrome patients ventilated with low tidal volume and high positive end-exspiratory pressure. Crit Care Med. 2008;36:2810–2816. doi: 10.1097/CCM.0b013e318186b74e.
    1. Preisman S, Kogan S, Berkenstadt H, Perel A. Predicting fluid responsiveness in patients undergoing cardiac surgery: functional haemodynamic parameters including the respiratory systolic variation test and static preload indicators. Br J Anaesth. 2005;95:746–755. doi: 10.1093/bja/aei262.
    1. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MR, Toboul JL. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162:134–138. doi: 10.1164/ajrccm.162.1.9903035.
    1. Teboul JL, Monnet X. Prediction of volume responsiveness in critically ill patients with spontaneous breathing activity. Curr Opin Crit Care. 2008;14:334–339. doi: 10.1097/MCC.0b013e3282fd6e1e.
    1. Pinsky MR. Functional hemodynamic monitoring. Intensive Care Med. 2002;28:386–388. doi: 10.1007/s00134-002-1229-2.
    1. Ornstein E, Eidelman LA, Drenger B, Elami A, Pizov R. Systolic pressure variation predicts the response to acute blood loss. J Clin Anesth. 1998;10:137–140. doi: 10.1016/S0952-8180(97)00257-2.
    1. Pizov R, Cohen M, Weiss Y, Sgal E, Cotev S, Perel A. Positive end-exspiratory pressure-induced hemodynamic changes are reflected in the arterial pressure waveform. Crit Care Med. 1996;24:1381–1387. doi: 10.1097/00003246-199608000-00018.
    1. Rooke GA. Systolic pressure variation as an indicator of hypovolemia. Curr Opin Anaesthesiol. 1995;8:511–515. doi: 10.1097/00001503-199512000-00009.
    1. Rooke GA, Schwid HA, Shapira Y. The effect of graded hemorrhage and intravascular volume replacement on systolic pressure variation in humans during mechanical and spontaneous ventilation. Anesth Analg. 1995;80:925–932.
    1. Beaussier M, Coriat P, Perel A, Lebret F, Kalfon P, Chemla D, Lienhart A, Viars P. Determinants of systolic pressure variation in patients ventilated after vascular surgery. J Cardiothorac Vasc Anesth. 1995;9:547–551. doi: 10.1016/S1053-0770(05)80139-9.
    1. Magder S, Georgiadis G, Cheong T. Respiratory variations in right atrial pressure predict the response to fluid challenge. J Crit Care. 1992;7:76–85. doi: 10.1016/0883-9441(92)90032-3.
    1. Perel A, Pizov R, Cotev S. Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology. 1987;67:498–502. doi: 10.1097/00000542-198710000-00009.
    1. Jardin F, Farcot JC, Gueret P, Prost JF, Ozier Y, Bourdarias JP. Cyclic changes in arterial pulse during respiratory support. Circulation. 1983;68:266–274. doi: 10.1161/01.CIR.68.2.266.
    1. Soubrier S, Daulnier F, Hubert H, Delour P, Lenci H, Onimus T, Nseir S, Durocher A. Can dynamic indicators help the prediction of fluid responsiveness in spontaneously breathing critically ill patients? Intensive Care Med. 2007;33:1117–1124. doi: 10.1007/s00134-007-0644-9.
    1. Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, Teboul JL. Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med. 2006;34:1402–1407. doi: 10.1097/01.CCM.0000215453.11735.06.
    1. Heenen S, De Backer D, Vincent JL. How can the response to volume expansion in patients with spontaneous respiratory movements be predicted? Crit Care. 2006;10:R102. doi: 10.1186/cc4970.
    1. Kramer A, Zygun D, Hawes H, Easton P, Ferland A. Pulse pressure variation predicts fluid responsiveness following coronary artery bypass surgery. Chest. 2004;126:1563–1568. doi: 10.1378/chest.126.5.1563.
    1. Lakhal K, Ehrmann S, Benzekri-Lefévre D, Runge I, Legras A, Dequin PF, Mercier E, Wolff M, Régnier B, Boulain T. Respiratory pulse pressure variation fails to predict fluid responsiveness in acute respiratory distress syndrome. Crit Care. 2011;15:R85. doi: 10.1186/cc10083.
    1. Muller L, Louart G, Bousquet PJ, Candela D, Zoric L, Coussaye JE, Jaber S, Lefrant JY. The influence of the airway pressure on pulsed pressure variation as a predictor of fluid responsiveness. Intensive Care Med. 2010;36:496–503. doi: 10.1007/s00134-009-1686-y.
    1. Vallée F, Richard JCM, Mari A, Gallas T, Arsac E, Verlaan PS, Chousterman B, Samii K, Genestal M, Fourcade O. Pulse pressure variations adjusted by alveolar driving pressure to assess fluid responsiveness. Intensive Care Med. 2009;35:1004–1010. doi: 10.1007/s00134-009-1478-4.
    1. De Backer D, Taccone FS, Holsten R, Ibrahimi F, Vincent JL. Influence of respiratory rate on stroke volume variation in mechanically ventilated patients. Anesthesiology. 2009;110:1092–1097. doi: 10.1097/ALN.0b013e31819db2a1.
    1. Charron C, Fessenmeyer C, Cosson C, Mazoit JX, Hebert JL, Benhamou D, Edouard AR. The influence of tidal volume on the dynamic variables of fluid responsiveness in critically ill patients. Anesth Analg. 2006;102:1511–1517. doi: 10.1213/01.ane.0000209015.21418.f4.
    1. De Backer D, Heenen S, Koch M, Vincent JL. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med. 2005;31:517–523. doi: 10.1007/s00134-005-2586-4.
    1. Michard F, Chemla D, Richard C, Wysocki M, Pinsky MR, Lecarpentier Y, Teboul JL. Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effect of PEEP. Am J Respir Crit Care Med. 1999;159:935–939. doi: 10.1164/ajrccm.159.3.9805077.
    1. Kim HK, Pinsky MR. Effect of tidal volume, sampling duration, and cardiac contractility on pulse pressure variation during positive-pressure ventilation. Crit Care Med. 2008;36:2858–2862. doi: 10.1097/CCM.0b013e3181865aea.
    1. Nouira S, Elatrous S, Dimassi S, Besbes L, Boukef R, Mohamed B, Abroug F. Effects of norepinephrin on static and dynamic preload indicators in experimental hemorrhagic shock. Crit Care Med. 2005;33:2339–2343. doi: 10.1097/01.CCM.0000182801.48137.13.
    1. Jardin F. Cyclic changes in arterial pressure during mechanical ventilation. Intensive Care Med. 2004;30:1047–1050. doi: 10.1007/s00134-004-2254-0.
    1. Cooke HW, Ryan KL, Convertino VA. Lower body negative pressure as a model to study progression to acute hemorrhagic shock in humans. J Appl Physiol. 2004;96:1249–1261.
    1. Trzeciak S, Rivers EP. Clinical manifestations of disordered microcirculatory perfusion in severe sepsis. Crit Care. 2005;9(suppl 4):S20–S26. doi: 10.1186/cc3744.
    1. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004;32:1825–1831. doi: 10.1097/01.CCM.0000138558.16257.3F.
    1. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166:98–104. doi: 10.1164/rccm.200109-016OC.
    1. De Backer D, Hollenberg S, Boerma C, Goedhart P, Büchele G, Ospina-Tascon G, Dobbe I, Ince C. How to evaluate the microcirculation:report of a round table conference. Crit Care. 2007;11:R101. doi: 10.1186/cc6118.
    1. Bartels AB, Bezemer R, Milstein DMJ, Radder M, Lima A, Cherpanath TGV, Heger M, Karemaker JM, Ince C. The microcirculatory response to compensated hypovolemia in lower body negative pressure model. Microvasc Res. 2011;82:374–380. doi: 10.1016/j.mvr.2011.07.010.
    1. Ward KR, Tiba MH, Ryan KL, Filho IPT, Rickards CA, Witten T, Soller BR, Ludwig DA, Convertino VA. Oxygen transport characterization of a human model of progressive hemorrhage. Resuscitation. 2010;81:987–993. doi: 10.1016/j.resuscitation.2010.03.027.
    1. Magder S. Further cautions for the use of ventilatory-induced changes in arterial pressures to predict volume responsiveness. Crit Care. 2010;14:197. doi: 10.1186/cc9223.
    1. Perel A, Minkovich L, Preisman S, Abiad M, Segal E, Coriat P. Assessing fuid-responsiveness by a standardized ventilatory maneuver: the respiratory systolic variation test. Anesth Analg. 2005;100:942–945. doi: 10.1213/.

Source: PubMed

Подписаться