A novel autosomal recessive GJA1 missense mutation linked to Craniometaphyseal dysplasia

Ying Hu, I-Ping Chen, Salome de Almeida, Valdenize Tiziani, Cassio M Raposo Do Amaral, Kalpana Gowrishankar, Maria Rita Passos-Bueno, Ernst J Reichenberger, Ying Hu, I-Ping Chen, Salome de Almeida, Valdenize Tiziani, Cassio M Raposo Do Amaral, Kalpana Gowrishankar, Maria Rita Passos-Bueno, Ernst J Reichenberger

Abstract

Craniometaphyseal dysplasia (CMD) is a rare sclerosing skeletal disorder with progressive hyperostosis of craniofacial bones. CMD can be inherited in an autosomal dominant (AD) trait or occur after de novo mutations in the pyrophosphate transporter ANKH. Although the autosomal recessive (AR) form of CMD had been mapped to 6q21-22 the mutation has been elusive. In this study, we performed whole-exome sequencing for one subject with AR CMD and identified a novel missense mutation (c.716G>A, p.Arg239Gln) in the C-terminus of the gap junction protein alpha-1 (GJA1) coding for connexin 43 (Cx43). We confirmed this mutation in 6 individuals from 3 additional families. The homozygous mutation cosegregated only with affected family members. Connexin 43 is a major component of gap junctions in osteoblasts, osteocytes, osteoclasts and chondrocytes. Gap junctions are responsible for the diffusion of low molecular weight molecules between cells. Mutations in Cx43 cause several dominant and recessive disorders involving developmental abnormalities of bone such as dominant and recessive oculodentodigital dysplasia (ODDD; MIM #164200, 257850) and isolated syndactyly type III (MIM #186100), the characteristic digital anomaly in ODDD. However, characteristic ocular and dental features of ODDD as well as syndactyly are absent in patients with the recessive Arg239Gln Cx43 mutation. Bone remodeling mechanisms disrupted by this novel Cx43 mutation remain to be elucidated.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Pedigree information and case description.
Figure 1. Pedigree information and case description.
(A) Pedigrees of Families 1, 2 and 3 with mutation in the novel CMD gene GJA1. Proband DNA from Family 1 was used for exome sequencing (Arrow). (B) Radiographic images of proband for Family 3 show hyperostosis of cranial base and facial bones, femoral flaring and undertrabeculation of metaphyses with dense diaphyseal bone consistent with findings in Family 2. Diffuse widening of the proximal and medial phalanges are consistent with findings in CMD patients from Family 2 [18].
Figure 2. Confirmatory sequencing.
Figure 2. Confirmatory sequencing.
Sanger sequencing to confirm exome sequencing data with a mutation in the CONNEXIN 43 gene GJA1 in position c.716G>A (p.Arg239Gln). Data shown for Family 1 (VIII5 proband; VIII3 unaffected sibling; VII5 and VII6 heterozygous parents), Family 2 (V1 proband, V4 affected cousin; IV26 and IV27afffected aunts; V2 and V3 unaffected cousins; IV39 and IV40 heterozygous parents of V1; IV46 and IV47 heterozygous parents of V4) and Family 3 (III11 proband; III12 unaffected sibling; II8 and II9 heterozygous parents).
Figure 3. Phylogenetic comparison of GJA1 across…
Figure 3. Phylogenetic comparison of GJA1 across species.
Position of the mutation within a highly conserved region indicated with arrow.
Figure 4. Domain structure of CONNEXIN 43.
Figure 4. Domain structure of CONNEXIN 43.
The CX43 protein consists of an intracellular amino acid domain (AT), four transmembrane domains (TM), two extracellular loops and one intracellular loop. The novel CMD mutation is indicated as a red dot in the carboxyl-terminal domain (CT).

References

    1. Gorlin RJ (1994) Craniotubular bone disorders. Pediatr Radiol 24: 392-406. doi:. PubMed: .
    1. Hayashibara T, Komura T, Sobue S, Ooshima T (2000) Tooth eruption in a patient with craniometaphyseal dysplasia: case report. J Oral Pathol Med 29: 460-462. doi:. PubMed: .
    1. Mintz S, Velez I (2004) Craniometaphyseal dysplasia associated with obstructive sleep apnoea syndrome. Dentomaxillofac Radiol 33: 262-266. doi:. PubMed: .
    1. Zhang H, Somerman MJ, Berg J, Cunningham ML, Williams B (2007) Dental anomalies in a child with craniometaphysial dysplasia. Pediatr Dent 29: 415-419. PubMed: .
    1. Day RA, Park TS, Ojemann JG, Kaufman BA (1997) Foramen magnum decompression for cervicomedullary encroachment in craniometaphyseal dysplasia: case report. Neurosurgery 41: 960-964. doi:. PubMed: .
    1. Sewell MD, Akram H, Wadley J (2008) Foramen magnum decompression and expansile duroplasty for acquired Chiari type I malformation in craniometaphyseal dysplasia. Br J Neurosurg 22: 83-85. doi:. PubMed: .
    1. Juergens P, Ratia J, Beinemann J, Krol Z, Schicho K et al. (2011) Enabling an unimpeded surgical approach to the skull base in patients with cranial hyperostosis, exemplarily demonstrated for craniometaphyseal dysplasia. J Neurosurg 115: 528-535. doi:. PubMed: .
    1. Chen IP, Wang CJ, Strecker S, Koczon-Jaremko B, Boskey A et al. (2009) Introduction of a Phe377del mutation in ANK creates a mouse model for craniometaphyseal dysplasia. J Bone Miner Res 24: 1206-1215. doi:. PubMed: .
    1. Chen IP, Wang L, Jiang X, Aguila HL, Reichenberger EJ (2011) A Phe377del mutation in ANK leads to impaired osteoblastogenesis and osteoclastogenesis in a mouse model for craniometaphyseal dysplasia (CMD). Hum Mol Genet 20: 948-961. doi:. PubMed: .
    1. Beighton P (1995) Craniometaphyseal dysplasia (CMD), autosomal dominant form. J Med Genet 32: 370-374. doi:. PubMed: .
    1. Tinschert S, Braun HS (1998) Craniometaphyseal dysplasia in six generations of a German kindred. Am J Med Genet 77: 175-181. doi:. PubMed: .
    1. Nürnberg P, Thiele H, Chandler D, Höhne W, Cunningham ML et al. (2001) Heterozygous mutations in ANKH, the human ortholog of the mouse progressive ankylosis gene, result in craniometaphyseal dysplasia. Nat Genet 28: 37-41. doi:. PubMed: .
    1. Reichenberger E, Tiziani V, Watanabe S, Park L, Ueki Y et al. (2001) Autosomal dominant craniometaphyseal dysplasia is caused by mutations in the transmembrane protein ANK. Am J Hum Genet 68: 1321-1326. doi:. PubMed: .
    1. Dutra EH, Chen IP, McGregor TL, Ranells JD, Reichenberger EJ (2012) Two novel large ANKH deletion mutations in sporadic cases with craniometaphyseal dysplasia. Clin Genet 81: 93-95. doi:. PubMed: .
    1. Kornak U, Brancati F, Le Merrer M, Lichtenbelt K, Höhne W et al. (2010) Three novel mutations in the ANK membrane protein cause craniometaphyseal dysplasia with variable conductive hearing loss. Am J Med Genet A 152A: 870-874. doi:. PubMed: .
    1. Zajac A, Baek SH, Salhab I, Radecki MA, Kim S et al. (2010) Novel ANKH mutation in a patient with sporadic craniometaphyseal dysplasia. Am J Med Genet A 152A: 770-776. doi:. PubMed: .
    1. Ho AM, Johnson MD, Kingsley DM (2000) Role of the mouse ank gene in control of tissue calcification and arthritis. Science 289: 265-270. doi:. PubMed: .
    1. Iughetti P, Alonso LG, Wilcox W, Alonso N, Passos-Bueno MR (2000) Mapping of the autosomal recessive (AR) craniometaphyseal dysplasia locus to chromosome region 6q21-22 and confirmation of genetic heterogeneity for mild AR spondylocostal dysplasia. Am J Med Genet 95: 482-491. doi:. PubMed: .
    1. Millard DR Jr., Maisels DO, Batstone JH, Yates BW (1967) Craniofacial surgery in craniometaphyseal dysplasia. Am J Surg 113: 615-621. doi:. PubMed: .
    1. Penchaszadeh VB, Gutierrez ER, Figueroa E (1980) Autosomal recessive craniometaphyseal dysplasia. Am J Med Genet 5: 43-55. doi:. PubMed: .
    1. Prontera P, Rogaia D, Sobacchi C, Tavares VL, Mazzotta G et al. (2011) Craniometaphyseal dysplasia with severe craniofacial involvement shows homozygosity at 6q21-22.1 locus. Am J Med Genet A 155A: 1106-1108. PubMed: .
    1. Giepmans BN, Verlaan I, Hengeveld T, Janssen H, Calafat J et al. (2001) Gap junction protein connexin-43 interacts directly with microtubules. Curr Biol 11: 1364-1368. doi:. PubMed: .
    1. Civitelli R (2008) Cell-cell communication in the osteoblast/osteocyte lineage. Arch Biochem Biophys 473: 188-192. doi:. PubMed: .
    1. Stains JP, Civitelli R (2005) Gap junctions in skeletal development and function. Biochim Biophys Acta 1719: 69-81. doi:. PubMed: .
    1. Bivi N, Nelson MT, Faillace ME, Li J, Miller LM et al. (2012) Deletion of Cx43 from osteocytes results in defective bone material properties but does not decrease extrinsic strength in cortical bone. Calcif Tissue Int 91: 215-224. doi:. PubMed: .
    1. Loiselle AE, Paul EM, Lewis GS, Donahue HJ (2013) Osteoblast and osteocyte-specific loss of Connexin 43 results in delayed bone formation and healing during murine fracture healing. J Orthop Res 31: 147-154. doi:. PubMed: .
    1. Donahue HJ, Li Z, Zhou Z, Yellowley CE (2000) Differentiation of human fetal osteoblastic cells and gap junctional intercellular communication. Am J Physiol Cell Physiol 278: C315-C322. PubMed: .
    1. Li Z, Zhou Z, Yellowley CE, Donahue HJ (1999) Inhibiting gap junctional intercellular communication alters expression of differentiation markers in osteoblastic cells. Bone 25: 661-666. doi:. PubMed: .
    1. Chaible LM, Sanches DS, Cogliati B, Mennecier G, Dagli ML (2011) Delayed osteoblastic differentiation and bone development in Cx43 knockout mice. Toxicol Pathol 39: 1046-1055. doi:. PubMed: .
    1. Lecanda F, Warlow PM, Sheikh S, Furlan F, Steinberg TH et al. (2000) Connexin 43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. J Cell Biol 151: 931-944. doi:. PubMed: .
    1. Chung DJ, Castro CH, Watkins M, Stains JP, Chung MY et al. (2006) Low peak bone mass and attenuated anabolic response to parathyroid hormone in mice with an osteoblast-specific deletion of connexin 43. J Cell Sci 119: 4187-4198. doi:. PubMed: .
    1. Zhang Y, Paul EM, Sathyendra V, Davison A, Sharkey N et al. (2011) Enhanced osteoclastic resorption and responsiveness to mechanical load in gap junction deficient bone. PLOS ONE 6: e23516. doi:. PubMed: .
    1. Loddenkemper T, Grote K, Evers S, Oelerich M, Stögbauer F (2002) Neurological manifestations of the oculodentodigital dysplasia syndrome. J Neurol 249: 584-595. doi:. PubMed: .
    1. Paznekas WA, Boyadjiev SA, Shapiro RE, Daniels O, Wollnik B et al. (2003) Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet 72: 408-418. doi:. PubMed: .
    1. Watkins M, Grimston SK, Norris JY, Guillotin B, Shaw A et al. (2011) Osteoblast connexin 43 modulates skeletal architecture by regulating both arms of bone remodeling. Mol Biol Cell 22: 1240-1251. doi:. PubMed: .
    1. Kjaer KW, Hansen L, Eiberg H, Leicht P, Opitz JM et al. (2004) Novel Connexin 43 (GJA1) mutation causes oculo-dento-digital dysplasia with curly hair. Am J Med Genet A 127A: 152-157. doi:. PubMed: .
    1. Pizzuti A, Flex E, Mingarelli R, Salpietro C, Zelante L et al. (2004) A homozygous GJA1 gene mutation causes a Hallermann-Streiff/ODDD spectrum phenotype. Hum Mutat 23: 286. doi:. PubMed: .
    1. Richardson R, Donnai D, Meire F, Dixon MJ (2004) Expression of Gja1 correlates with the phenotype observed in oculodentodigital syndrome/type III syndactyly. J Med Genet 41: 60-67. doi:. PubMed: .
    1. Gong XQ, Shao Q, Langlois S, Bai D, Laird DW (2007) Differential potency of dominant negative connexin 43 mutants in oculodentodigital dysplasia. J Biol Chem 282: 19190-19202. doi:. PubMed: .
    1. Shao Q, Liu Q, Lorentz R, Gong XQ, Bai D et al. (2012) Structure and functional studies of N-terminal Cx43 mutants linked to oculodentodigital dysplasia. Mol Biol Cell 23: 3312-3321. doi:. PubMed: .
    1. Huang T, Shao Q, Macdonald A, Xin L, Lorentz R et al. (2013) Autosomal recessive GJA1 (Cx43) gene mutations cause oculodentodigital dysplasia by distinct mechanisms. J Cell Sci, 126: 2857–66. PubMed: .
    1. Bivi N, Lezcano V, Romanello M, Bellido T, Plotkin LI (2011) Connexin 43 interacts with betaarrestin: a pre-requisite for osteoblast survival induced by parathyroid hormone. J Cell Biochem 112: 2920-2930. doi:. PubMed: .
    1. Crespin S, Bechberger J, Mesnil M, Naus CC, Sin WC (2010) The carboxy-terminal tail of connexin 43 gap junction protein is sufficient to mediate cytoskeleton changes in human glioma cells. J Cell Biochem 110: 589-597. doi:. PubMed: .
    1. Jung YJ, Isaacs JS, Lee S, Trepel J, Neckers L (2003) Microtubule disruption utilizes an NFkappa B-dependent pathway to stabilize HIF-1alpha protein. J Biol Chem 278: 7445-7452. doi:. PubMed: .
    1. Mackenzie GG, Keen CL, Oteiza PI (2006) Microtubules are required for NF-kappaB nuclear translocation in neuroblastoma IMR-32 cells: modulation by zinc. J Neurochem 99: 402-415. doi:. PubMed: .
    1. Nogales E, Wang HW (2006) Structural intermediates in microtubule assembly and disassembly: how and why? Curr Opin Cell Biol 18: 179-184. doi:. PubMed: .
    1. Salinas PC (2007) Modulation of the microtubule cytoskeleton: a role for a divergent canonical Wnt pathway. Trends Cell Biol 17: 333-342. doi:. PubMed: .
    1. Stegman MA, Vallance JE, Elangovan G, Sosinski J, Cheng Y et al. (2000) Identification of a tetrameric hedgehog signaling complex. J Biol Chem 275: 21809-21812. doi:. PubMed: .
    1. Zhao M, Ko SY, Liu JH, Chen D, Zhang J et al. (2009) Inhibition of microtubule assembly in osteoblasts stimulates bone morphogenetic protein 2 expression and bone formation through transcription factor Gli2. Mol Cell Biol 29: 1291-1305. doi:. PubMed: .
    1. Chen G, Deng C, Li YP (2012) TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8: 272-288. PubMed: .
    1. Dai P, Nakagami T, Tanaka H, Hitomi T, Takamatsu T (2007) Cx43 mediates TGF-beta signaling through competitive Smads binding to microtubules. Mol Biol Cell 18: 2264-2273. doi:. PubMed: .

Source: PubMed

Подписаться