Efficacy of deescalated chemotherapy according to PAM50 subtypes, immune and proliferation genes in triple-negative early breast cancer: Primary translational analysis of the WSG-ADAPT-TN trial

Oleg Gluz, Cornelia Kolberg-Liedtke, Aleix Prat, Matthias Christgen, Daniel Gebauer, Ronald Kates, Laia Paré, Eva-Maria Grischke, Helmut Forstbauer, Michael Braun, Mathias Warm, John Hackmann, Christoph Uleer, Bahriye Aktas, Claudia Schumacher, Sherko Kuemmel, Rachel Wuerstlein, Enrico Pelz, Ulrike Nitz, Hans Heinrich Kreipe, Nadia Harbeck, Oleg Gluz, Cornelia Kolberg-Liedtke, Aleix Prat, Matthias Christgen, Daniel Gebauer, Ronald Kates, Laia Paré, Eva-Maria Grischke, Helmut Forstbauer, Michael Braun, Mathias Warm, John Hackmann, Christoph Uleer, Bahriye Aktas, Claudia Schumacher, Sherko Kuemmel, Rachel Wuerstlein, Enrico Pelz, Ulrike Nitz, Hans Heinrich Kreipe, Nadia Harbeck

Abstract

In the neoadjuvant WSG-ADAPT-TN trial, 12-week nab-paclitaxel + carboplatin (nab-pac/carbo) was highly effective and superior to nab-paclitaxel + gemcitabine (nab-pac/gem) in triple-negative breast cancer regarding pathological complete response (pCR). Predictive markers for deescalated taxane/carbo use in TNBC need to be identified. Patients received 4 × nab-pac 125 mg/m2 (plus carbo AUC2 or gem 1,000 mg/m2 d1,8 q21). Expression of 119 genes and PAM50 scores by nCounter were available in 306/336 pretherapeutic samples. Interim survival analysis was planned after 36 months median follow-up. Basal-like (83.3%) compared to other subtypes was positively associated with pCR (38% vs. 20%, p = 0.015), as was lower HER2 score (p < 0.001). Proliferation biomarkers were positively associated with pCR, that is, PAM50 proliferation, ROR scores (all p < 0.004), higher Ki-67 (IHC; p < 0.001). For nab-pac/carbo, expression of immunological (CD8, PD1 and PFDL1) genes and proliferation markers (proliferation and ROR scores, MKI67, CDC20, NUF2, KIF2C, CENPF, EMP3 and TYMS) were positively associated with pCR (p < 0.05 for all). For nab-pac/gem, angiogenesis genes were negatively associated with pCR (ANGPTL4: p = 0.05; FGFR4: p = 0.02; VEGFA: p = 0.03). pCR after 12 weeks was strongly associated with favorable outcome (3y event-free survival: 92% vs. 71%, p < 0.001). In early TNBC, basal-like subtype, higher Ki-67 (IHC) and lower HER2 score were, associated with chemosensitivity. Chemoresistance pathways differed between the two taxane based combinations. Combination of proliferation/immune markers and PAM50 subtype could allow patient selection for further deescalated chemotherapy and/or immune treatment approaches.

Keywords: ADAPT; HER2; PAM50; TNBC; carboplatin; deescalated chemotherapy; gemcitabine; immune markers; nab-paclitaxel.

© 2019 UICC.

References

    1. Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature 2000;406:747-52.
    1. Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 2011;121:2750-67.
    1. Burstein MD, Tsimelzon A, Poage GM, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res 2015;21:1688-98.
    1. Cheang MCU, Voduc D, Bajdik C, et al. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 2008;14:1368-76.
    1. Nielsen TO, Parker JS, Leung S, et al. A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin Cancer Res 2010;16:5222-32.
    1. Gluz O, Liedtke C, Huober J, et al. Comparison of prognostic and predictive impact of genomic or central grade and immunohistochemical subtypes or IHC4 in HR+/HER2- early breast cancer: WSG-AGO EC-doc trial. Ann Oncol 2016;27:1035-40.
    1. Parker JS, Mullins M, Cheang MCU, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 2009;27:1160-7.
    1. Liedtke C, Mazouni C, Hess KR, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 2008;26:1275-81.
    1. Symmans WF, Wei C, Gould R, et al. Long-term prognostic risk after neoadjuvant chemotherapy associated with residual cancer burden and breast cancer subtype. J Clin Oncol 2017;35:1049-60.
    1. von Minckwitz G, Schneeweiss A, Loibl S, et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. Lancet Oncol 2014;15:747-56.
    1. von Minckwitz G, Untch M, Blohmer J-U, et al. Definition and impact of pathological complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol 2012;30:1796-804.
    1. Sikov WM, Berry DA, Perou CM, et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). J Clin Oncol 2015;33:13-21.
    1. Blum JL, Flynn PJ, Yothers G, et al. Anthracyclines in early breast cancer: the ABC trials-USOR 06-090, NSABP B-46-I/USOR 07132, and NSABP B-49 (NRG oncology). J Clin Oncol 2017;35:2647-55.
    1. Nitz U, Gluz O, Clemens M, et al. West German study PlanB trial: adjuvant four cycles of Epirubicin and cyclophosphamide plus docetaxel versus six cycles of docetaxel and cyclophosphamide in HER2-negative early breast cancer. J Clin Oncol 2019;37:799-808.
    1. Untch M, Jackisch C, Schneeweiss A, et al. Nab-paclitaxel versus solvent-based paclitaxel in neoadjuvant chemotherapy for early breast cancer (GeparSepto;GBG 69): a randomised, phase 3 trial. Lancet Oncol 2016;17:345-56.
    1. Schneeweiss A, Möbus V, Tesch H, et al. Intense dose-dense epirubicin, paclitaxel, cyclophosphamide versus weekly paclitaxel, liposomal doxorubicin (plus carboplatin in triple-negative breast cancer) for neoadjuvant treatment of high-risk early breast cancer (GeparOcto;GBG 84): a randomised phase III trial. Eur J Cancer 2019;106:181-92.
    1. Sikov W, Berry D, Perou C, et al. Event-free and overall survival following neoadjuvant weekly paclitaxel and dose-dense AC +/− carboplatin and/or bevacizumab in triple-negative breast cancer: Outcomes from CALGB 40603 (Alliance). Cancer Res 2016;76:S2-05.
    1. Hahnen E, Lederer B, Hauke J, et al. Germline mutation status, pathological complete response, and disease-free survival in triple-negative breast cancer: secondary analysis of the geparsixto randomized clinical trial. JAMA Oncol 2017;3:1378-85.
    1. Tutt A, Tovey H, Cheang MCU, et al. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT trial. Nat Med 2018;24:628-37.
    1. Sharma P, López-Tarruella S, Garcia-Saenz JA, et al. Pathological response and survival in triple-negative breast cancer following neoadjuvant carboplatin plus docetaxel. Clin Cancer Res 2018;24:5820-9.
    1. Fasching PA, Loibl S, Hu C, et al. BRCA1/2 mutations and bevacizumab in the neoadjuvant treatment of breast cancer: response and prognosis results in patients with triple-negative breast cancer from the GeparQuinto study. J Clin Oncol 2018;36:2281-7.
    1. Sharma P, López-Tarruella S, García-Saenz JA, et al. Efficacy of neoadjuvant carboplatin plus docetaxel in triple-negative breast cancer: combined analysis of two cohorts. Clin Cancer Res 2017;23:649-57.
    1. Hu X-C, Zhang J, Xu B-H, et al. Cisplatin plus gemcitabine versus paclitaxel plus gemcitabine as first-line therapy for metastatic triple-negative breast cancer (CBCSG006): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol 2015;16:436-46.
    1. Jørgensen CLT, Nielsen TO, Bjerre KD, et al. PAM50 breast cancer intrinsic subtypes and effect of gemcitabine in advanced breast cancer patients. Acta Oncol 2014;53:776-87.
    1. Masuda H, Baggerly KA, Wang Y, et al. Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin Cancer Res 2013;19:5533-40.
    1. Lehmann BD, Jovanović B, Chen X, et al. Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS One 2016;11:e0157368.
    1. Sikov WM, Barry WT, Hoadley KA, et al. Abstract S4-05: Impact of intrinsic subtype by PAM50 and other gene signatures on pathologic complete response (pCR) rates in triple-negative breast cancer (TNBC) after neoadjuvant chemotherapy (NACT) +/− carboplatin (Cb) or bevacizumab (Bev): CALGB 40603/150709 (Alliance). San Antonio Breast Cancer Symp 2015;75:S4-05.
    1. Prat A, Fan C, Fernández A, et al. Response and survival of breast cancer intrinsic subtypes following multi-agent neoadjuvant chemotherapy. BMC Med 2015;13:303.
    1. Ali HR, Provenzano E, Dawson SJ, et al. Association between CD8+ T-cell infiltration and breast cancer survival in 12,439 patients. Ann Oncol 2014;25:1536-43.
    1. Rody A, Karn T, Liedtke C, et al. A clinically relevant gene signature in triple negative and basal-like breast cancer. Breast Cancer Res 2011;13:R97.
    1. Denkert C, von Minckwitz G, Darb-Esfahani S, et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3,771 patients treated with neoadjuvant therapy. Lancet Oncol 2018;19:40-50.
    1. Pruneri G, Vingiani A, Bagnardi V, et al. Clinical validity of tumor-infiltrating lymphocytes analysis in patients with triple-negative breast cancer. Ann Oncol 2016;27:249-56.
    1. Denkert C, von Minckwitz G, Brase JC, et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol 2015;33:983-91.
    1. Denkert C, Loibl S, Müller BM, et al. Ki67 levels as predictive and prognostic parameters in pretherapeutic breast cancer core biopsies: a translational investigation in the neoadjuvant GeparTrio trial. Ann Oncol 2013;24:2786-93.
    1. Keam B, Im S-A, Lee K-H, et al. Ki-67 can be used for further classification of triple negative breast cancer into two subtypes with different response and prognosis. Breast Cancer Res 2011;13:R22.
    1. Prat A, Lluch A, Albanell J, et al. Predicting response and survival in chemotherapy-treated triple-negative breast cancer. Br J Cancer 2014;111:1532-41.
    1. Gluz O, Nitz U, Liedtke C, et al. Comparison of neoadjuvant nab-paclitaxel+carboplatin vs nab-paclitaxel+gemcitabine in triple-negative breast cancer: randomized WSG-ADAPT-TN trial results. J Natl Cancer Inst 2018;110:628-37.
    1. Prat A, Galván P, Jimenez B, et al. Prediction of response to neoadjuvant chemotherapy using Core needle biopsy samples with the Prosigna assay. Clin Cancer Res 2016;22:560-6.
    1. Prat A, Parker JS, Karginova O, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 2010;12:R68.
    1. Hu Z, Fan C, Livasy C, et al. A compact VEGF signature associated with distant metastases and poor outcomes. BMC Med 2009;7:9.
    1. Martin M, Brase JC, Ruiz A, et al. Prognostic ability of EndoPredict compared to research-based versions of the PAM50 risk of recurrence (ROR) scores in node-positive, estrogen receptor-positive, and HER2-negative breast cancer. A GEICAM/9906 sub-study. Breast Cancer Res Treat 2016;156:81-9.
    1. Lehmann BD, Pietenpol JA. Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes. J Pathol 2014;232:142-50.
    1. Prat A, Pineda E, Adamo B, et al. Clinical implications of the intrinsic molecular subtypes of breast cancer. The Breast 2015;24:S26-35.
    1. Gluz O, Liedtke C, Prat A, et al. Abstract P2-10-03: genomic markers but not molecular subtypes provide prognostic impact and predict anthracycline efficacy in early triple-negative breast cancer: results from the prospective WSG PlanB trial. Cancer Res 2018;78:P2-10-03.
    1. Echavarría I, López-Tarruella S, Picornell AC, et al. Pathological response in a triple negative breast cancer cohort treated with neoadjuvant carboplatin and docetaxel according to Lehmann's refined classification. Clin Cancer Res 2018;24:1845-52.
    1. Venet D, Rothe F, Bareche Y, et al. Unravelling triple-negative breast cancer molecular heterogeneity using an integrative multiomic analysis. Ann Oncol 2018;29:895-902.
    1. Miyashita M, Sasano H, Tamaki K, et al. Tumor-infiltrating CD8+ and FOXP3+ lymphocytes in triple-negative breast cancer: its correlation with pathological complete response to neoadjuvant chemotherapy. Breast Cancer Res Treat 2014;148:525-34.
    1. Hoadley K, Hyslop T, Fan C, et al. Multivariate analysis of subtype and gene expression signatures predictive of pathologic complete response (pCR) in triple-negative breast cancer (TNBC): CALGB 40603 (Alliance). Cancer Res 2017;77:PD1-03.
    1. Loibl S, Untch M, Burchardi N, et al. Randomized phase II neoadjuvant study (GeparNuevo) to investigate the addition of durvalumab to a taxane-anthracycline containing chemotherapy in triple negative breast cancer (TNBC). J Clin Oncol 2018;36:104.
    1. Thussbas C, Nahrig J, Streit S, et al. FGFR4 Arg388 allele is associated with resistance to adjuvant therapy in primary breast cancer. J Clin Oncol 2006;24:3747-55.
    1. Roidl A, Berger H-J, Kumar S, et al. Resistance to chemotherapy is associated with fibroblast growth factor receptor 4 up-regulation. Clin Cancer Res 2009;15:2058-66.
    1. Marmé F, Werft W, Benner A, et al. FGFR4 Arg388 genotype is associated with pathological complete response to neoadjuvant chemotherapy for primary breast cancer. Ann Oncol 2010;21:1636-42.
    1. Chae YK, Ranganath K, Hammerman PS, et al. Inhibition of the fibroblast growth factor receptor (FGFR) pathway: the current landscape and barriers to clinical application. Oncotarget 2017;8:16052-74.

Source: PubMed

Подписаться