Immunomodulatory Effects of Drugs for Effective Cancer Immunotherapy

Maiko Matsushita, Mai Kawaguchi, Maiko Matsushita, Mai Kawaguchi

Abstract

Recent advances in cancer immunotherapy, including immune checkpoint inhibitors or adoptive T cell therapies, have contributed to better outcomes in cancer patients. However, there are still many cancers with no cure. Therefore, combinations of several treatment strategies are being explored, and enhancing anticancer immunity will play an important role to combat the disease. There have been several reports on the immune-modulatory effects of commonly used drugs, namely, statin, metformin, and angiotensin receptor blockers (ARBs), which suggest that these drugs could enhance immunity against cancer cells. Other anticancer drugs, such as anthracyclines, thalidomides, lenalidomides, and hypomethylating drugs, could also strengthen the immune system to attack cancer cells at a relatively low dose. Hence, these drugs might contribute to better outcomes in cancer patients.

References

    1. Latinne D., Fiasse R. New insights into the cellular immunology of the intestine in relation to the pathophysiology of inflammatory bowel diseases. Acta Gastro-Enterologica Belgica. 2006;69(4):393–405.
    1. Lombardi A., Tsomos E., Hammerstad S. S., Tomer Y. Interferon alpha: The key trigger of type 1 diabetes. Journal of Autoimmunity. 2018:30323–30328. doi: 10.1016/j.jaut.2018.08.003.
    1. Sam Q. H., Yew W. S., Seneviratne C. J., Chang M. W., Chai L. Y. Immunomodulation as Therapy for Fungal Infection: Are We Closer? Frontiers in Microbiology. 2018;9 doi: 10.3389/fmicb.2018.01612.
    1. Gisterå A., Ketelhuth D. F. Lipid-driven immunometabolic responses in atherosclerosis. Current Opinion in Lipidology. 2018:375–380. doi: 10.1097/MOL.0000000000000540.
    1. Chen D. S., Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321–330. doi: 10.1038/nature21349.
    1. Wahid B., Ali A., Rafique S., et al. An overview of cancer immunotherapeutic strategies. Immunotherapy. 2018;10(11):999–1010. doi: 10.2217/imt-2018-0002.
    1. Emens L. A. Breast cancer immunotherapy: Facts and hopes. Clinical Cancer Research. 2018;24(3):511–520. doi: 10.1158/1078-0432.CCR-16-3001.
    1. Ribas A., Wolchok J. D. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350–1355. doi: 10.1126/science.aar4060.
    1. Fehr T., Kahlert C., Fierz W., et al. Statin-induced immunomodulatory effects on human T cells in vivo. Atherosclerosis. 2004;175(1):83–90. doi: 10.1016/j.atherosclerosis.2004.02.016.
    1. Ursini F., Russo E., Pellino G., et al. Metformin and Autoimmunity: A “New Deal” of an Old Drug. Frontiers in Immunology. 2018;9 doi: 10.3389/fimmu.2018.01236.
    1. An J., Nakajima T., Kuba K., Kimura A. Losartan inhibits LPS-induced inflammatory signaling through a PPARγ-dependent mechanism in human THP-1 macrophages. Hypertension Research. 2010;33(8):831–835. doi: 10.1038/hr.2010.79.
    1. Popovic A., Jaffee E. M., Zaidi N. Emerging strategies for combination checkpoint modulators in cancer immunotherapy. The Journal of Clinical Investigation. 2018;128(8):3209–3218. doi: 10.1172/JCI120775.
    1. Ott P. A., Hodi F. S., Kaufman H. L., Wigginton J. M., Wolchok J. D. Combination immunotherapy: A road map. Journal for ImmunoTherapy of Cancer. 2017;5(1)
    1. Banach M., Serban C., Sahebkar A., et al. Impact of statin therapy on coronary plaque composition: a systematic review and meta-analysis of virtual histology intravascular ultrasound studies. BMC Medicine. 2015;13(1) doi: 10.1186/s12916-015-0459-4.
    1. Sarrabayrouse G., Pich C., Teiti I., Tilkin-Mariame A. F. Regulatory properties of statins and rho gtpases prenylation inhibitiors to stimulate melanoma immunogenicity and promote anti-melanoma immune response. International Journal of Cancer. 2017;140(4):747–755. doi: 10.1002/ijc.30422.
    1. Ziegler V., Henninger C., Simiantonakis I., et al. Rho inhibition by lovastatin affects apoptosis and DSB repair of primary human lung cells in vitro and lung tissue in vivo following fractionated irradiation. Cell Death & Disease. 2017;8(8):p. e2978. doi: 10.1038/cddis.2017.372.
    1. Palomino-Morales R., Perales S., Torres C., Linares A., Alejandre M. J. Effect of HMG-CoA reductase inhibition on vascular smooth muscle cells extracellular matrix production: Role of RhoA. Current Vascular Pharmacology. 2016;14(4):345–352. doi: 10.2174/1570161114666160229115553.
    1. Islam M., Sharma S., Kumar B., Teknos T. N. Atorvastatin inhibits RhoC function and limits head and neck cancer metastasis. Oral Oncology. 2013;49(8):778–786. doi: 10.1016/j.oraloncology.2013.04.003.
    1. Cote-Daigneault J., Mehandru S., Ungaro R., Atreja A., Colombel J.-F. Potential Immunomodulatory Effects of Statins in Inflammatory Bowel Disease. Inflammatory Bowel Diseases. 2015;22(3):724–732. doi: 10.1097/MIB.0000000000000640.
    1. Sarrabayrouse G., Pich C., Moriez R., et al. Melanoma cells treated with GGTI and IFN-γ allow murine vaccination and enhance cytotoxic response against human melanoma cells. PLoS ONE. 2010;5(2)
    1. Vogel T. J., Goodman M. T., Li A. J., Jeon C. Y. Statin treatment is associated with survival in a nationally representative population of elderly women with epithelial ovarian cancer. Gynecologic Oncology. 2017;146(2):340–345. doi: 10.1016/j.ygyno.2017.05.009.
    1. Wang A., Wakelee H. A., Aragaki A. K., et al. Protective Effects of Statins in Cancer: Should They Be Prescribed for High-Risk Patients? Current Atherosclerosis Reports. 2016;18(12) doi: 10.1007/s11883-016-0625-y.
    1. Desai P., Wallace R., Anderson M. An analysis of the effect of statins on the risk of Non-Hodgkin's Lymphoma in the Women's Health Initiative cohort. Cancer Medicine. 2018;7(5):2121–2130. doi: 10.1002/cam4.1368.
    1. Shaw R. J., Lamia K. A., Vasquez D., et al. Medicine: the kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 2005;310(5754):1642–1646. doi: 10.1126/science.1120781.
    1. Rena G., Hardie D. G., Pearson E. R. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577–1585. doi: 10.1007/s00125-017-4342-z.
    1. Eikawa S., Nishida M., Mizukami S., Yamazaki C., Nakayama E., Udono H. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proceedings of the National Acadamy of Sciences of the United States of America. 2015;112(6):1809–1814. doi: 10.1073/pnas.1417636112.
    1. Pereira F. V., Melo A. C., Low J. S., et al. Metformin exerts antitumor activity via induction of multiple death pathways in tumor cells and activation of a protective immune response. Oncotarget . 2018;9(40) doi: 10.18632/oncotarget.25380.
    1. Talairach J., Thournoux P. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mollecular Cell. 2018;71:606–620.
    1. Di Fusco D., Dinallo V., Monteleone I., et al. Metformin inhibits inflammatory signals in the gut by controlling AMPK and p38 MAP kinase activation. Clinical Science. 2018;132(11):1155–1168. doi: 10.1042/CS20180167.
    1. Son H. J., Lee J., Lee S. Y., etal. Metformin attenuates experimental autoimmune arthritis through reciprocal regulation of Th17/Treg balance and osteoclastogenesis. Mediators of Inflammation. 2014;2014:1–13.
    1. Rodriguez J., Hiel S., Delzenne N. M. Metformin: Old friend, new ways of action-implication of the gut microbiome? Current Opinion in Clinical Nutrition & Metabolic Care. 2018;21(4):294–301. doi: 10.1097/MCO.0000000000000468.
    1. George A. J., Thomas W. G., Hannan R. D. The renin-angiotensin system and cancer: old dog, new tricks. Nature Reviews Cancer. 2010;10(11):745–759. doi: 10.1038/nrc2945.
    1. Busby J., McMenamin Ú., Spence A., Johnston B. T., Hughes C., Cardwell C. R. Angiotensin receptor blocker use and gastro-oesophageal cancer survival: a population-based cohort study. Alimentary Pharmacology & Therapeutics. 2018;47(2):279–288. doi: 10.1111/apt.14388.
    1. Cerullo M., Gani F., Chen S. Y., Canner J. K., Pawlik T. M. Impact of Angiotensin Receptor Blocker Use on Overall Survival Among Patients Undergoing Resection for Pancreatic Cancer. World Journal of Surgery. 2017;41(9):2361–2370. doi: 10.1007/s00268-017-4021-8.
    1. Oura K., Tadokoro T., Fujihara S., et al. Telmisartan inhibits hepatocellular carcinoma cell proliferation in vitro by inducing cell cycle arrest. Oncology Reports. 2017;38(5):2825–2835. doi: 10.3892/or.2017.5977.
    1. Fujihara S., Morishita A., Ogawa K., et al. The angiotensin II type 1 receptor antagonist telmisartan inhibits cell proliferation and tumor growth of esophageal adenocarcinoma via the AMPKalpha/mTOR pathway in vitro and in vivo. Oncotarget. 2017;8(5) doi: 10.18632/oncotarget.14345.
    1. Saikawa S., Kaji K., Nishimura N., et al. Angiotensin receptor blockade attenuates cholangiocarcinoma cell growth by inhibiting the oncogenic activity of Yes-associated protein. Cancer Letters. 2018;434:120–129. doi: 10.1016/j.canlet.2018.07.021.
    1. Coulson R., Liew S. H., Connelly A. A., etal. The angiotensin receptor blocker, losartan, inhibits mammary tumor development and progression to invasive carcinoma. Oncotarget. 2017;8:18640–18656.
    1. Nakamura K., Yaguchi T., Ohmura G., et al. Involvement of local renin-angiotensin system in immunosuppression of tumor microenvironment. Cancer Science. 2018;109(1):54–64. doi: 10.1111/cas.13423.
    1. Chim C. S., Kumar S. K., Orlowski R. Z., et al. Management of relapsed and refractory multiple myeloma: Novel agents, antibodies, immunotherapies and beyond. Leukemia. 2018;32(2):252–262. doi: 10.1038/leu.2017.329.
    1. Moreau P. How I treat myeloma with new agents. Blood. 2017;130(13):1507–1513. doi: 10.1182/blood-2017-05-743203.
    1. Pan B., Lentzsch S. The application and biology of immunomodulatory drugs (IMiDs) in cancer. Pharmacology & Therapeutics. 2012;136(1):56–68. doi: 10.1016/j.pharmthera.2012.07.004.
    1. Zeldis J. B., Knight R., Hussein M., Chopra R., Muller G. A review of the history, properties, and use of the immunomodulatory compound lenalidomide. Annals of the New York Academy of Sciences. 2011;1222(1):76–82. doi: 10.1111/j.1749-6632.2011.05974.x.
    1. Luptakova K., Rosenblatt J., Glotzbecker B., et al. Lenalidomide enhances anti-myeloma cellular immunity. Cancer Immunology, Immunotherapy. 2013;62(1):39–49. doi: 10.1007/s00262-012-1308-3.
    1. Quach H., Ritchie D., Stewart A. K., et al. Mechanism of action of immunomodulatory drugs (IMiDS) in multiple myeloma. Leukemia. 2010;24(1):22–32. doi: 10.1038/leu.2009.236.
    1. Hsu A. K., Quach H., Tai T., et al. The immunostimulatory effect of lenalidomide on NK-cell function is profoundly inhibited by concurrent dexamethasone therapy. Blood. 2011;117(5):1605–1613. doi: 10.1182/blood-2010-04-278432.
    1. Obeid M., Tesniere A., Ghiringhelli F., et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Medicine. 2007;13(1):54–61. doi: 10.1038/nm1523.
    1. Hodge J. W., Garnett C. T., Farsaci B., et al. Chemotherapy-induced immunogenic modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct from immunogenic cell death. International Journal of Cancer. 2013;133(3):624–636. doi: 10.1002/ijc.28070.
    1. Vacchelli E., Ma Y., Baracco E. E., et al. Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science. 2015;350:972–978.
    1. Sistigu A., Yamazaki T., Vacchelli E., et al. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nature Medicine. 2014;20(11):1301–1309. doi: 10.1038/nm.3708.
    1. Galluzzi L., Buqué A., Kepp O., Zitvogel L., Kroemer G. Immunogenic cell death in cancer and infectious disease. Nature Reviews Immunology. 2017;17(2):97–111. doi: 10.1038/nri.2016.107.
    1. Kroemer G., Galluzzi L., Kepp O., Zitvogel L. Immunogenic cell death in cancer therapy. Annual Review of Immunology. 2013;31:51–72. doi: 10.1146/annurev-immunol-032712-100008.
    1. Gebremeskel S., Johnston B. Concepts and mechanisms underlying chemotherapy induced immunogenic cell death: Impact on clinical studies and considerations for combined therapies. Oncotarget . 2015;6(39):41600–41619. doi: 10.18632/oncotarget.6113.
    1. Casares N., Pequignot M. O., Tesniere A., et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. The Journal of Experimental Medicine. 2005;202(12):1691–1701. doi: 10.1084/jem.20050915.
    1. Tesniere A., Schlemmer F., Boige V., et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene. 2010;29(4):482–491. doi: 10.1038/onc.2009.356.
    1. Lu X., Ding Z.-C., Cao Y., et al. Alkylating agent melphalan augments the efficacy of adoptive immunotherapy using tumor-specific CD4+ T cells. The Journal of Immunology. 2015;194(4):2011–2021. doi: 10.4049/jimmunol.1401894.
    1. Fucikova J., Truxova I., Hensler M., et al. Calreticulin exposure by malignant blasts correlates with robust anticancer immunity and improved clinical outcome in AML patients. Blood. 2016;128(26):3113–3124.
    1. Pozzi C., Cuomo A., Spadoni I., et al. The EGFR-specific antibody cetuximab combined with chemotherapy triggers immunogenic cell death. Nature Medicine. 2016;22(6):624–631. doi: 10.1038/nm.4078.
    1. Bezu L., Gomes-de-Silva L. C., Dewitte H., et al. Combinatorial Strategies for the Induction of Immunogenic Cell Death. Frontiers in Immunology. 2015;6 doi: 10.3389/fimmu.2015.00187.
    1. Pfirschke C., Engblom C., Rickelt S., et al. Immunogenic Chemotherapy Sensitizes Tumors to Checkpoint Blockade Therapy. Immunity. 2016;44(2):343–354. doi: 10.1016/j.immuni.2015.11.024.
    1. Montico B., Nigro A., Casolaro V., Dal Col J. Immunogenic Apoptosis as a Novel Tool for Anticancer Vaccine Development. International Journal of Molecular Sciences. 2018;19(2):p. 594. doi: 10.3390/ijms19020594.
    1. Garg A. D., More S., Rufo N., et al. Trial watch: Immunogenic cell death induction by anticancer chemotherapeutics. OncoImmunology. 2017;6(12):p. e1386829. doi: 10.1080/2162402X.2017.1386829.
    1. Ding L., Bailey MH., Porta-Pardo E. Perspective on oncogenic processes at the end of the beginning of cancer genomics. Cell. 2018;173:305–320. doi: 10.1016/j.cell.2018.03.033.
    1. Derissen E. J. B., Beijnen J. H., Schellens J. H. M. Concise drug review: Azacitidine and decitabine. The Oncologist. 2013;18(5):619–624. doi: 10.1634/theoncologist.2012-0465.
    1. Schroeder T., Rautenberg C., Haas R., Germing U., Kobbe G. Hypomethylating agents for treatment and prevention of relapse after allogeneic blood stem cell transplantation. International Journal of Hematology. 2018;107(2):138–150. doi: 10.1007/s12185-017-2364-4.
    1. Chen Y., McCarthy P. L., Hahn T., et al. Methods to prevent and treat relapse after hematopoietic stem cell transplantation with tyrosine kinase inhibitors, immunomodulating drugs, deacetylase inhibitors, and hypomethylating agents. Bone Marrow Transplantation. doi: 10.1038/s41409-018-0269-3.
    1. Luo N., Nixon M. J., Gonzalez-Ericsson P. I., et al. DNA methyltransferase inhibition upregulates MHC-I to potentiate cytotoxic T lymphocyte responses in breast cancer. Nature Communications. 2018;9(1) doi: 10.1038/s41467-017-02630-w.
    1. Matsushita M., Otsuka Y., Tsutsumida N., et al. Identification of Novel HLA-A∗24:02-Restricted Epitope Derived from a Homeobox Protein Expressed in Hematological Malignancies. PLoS ONE. 2016;11(1):p. e0146371. doi: 10.1371/journal.pone.0146371.
    1. Srivastava P., Paluch B. E., Matsuzaki J., et al. Induction of cancer testis antigen expression in circulating acute myeloid leukemia blasts following hypomethylating agent monotherapy. Oncotarget . 2016;7(11):12840–12856. doi: 10.18632/oncotarget.7326.
    1. Stone M. L., Chiappinelli K. B., Li H., et al. Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proceedings of the National Acadamy of Sciences of the United States of America. 2017;114(51):E10981–E10990. doi: 10.1073/pnas.1712514114.

Source: PubMed

Подписаться