Effect on Chest Compression Fraction of Continuous Manual Compressions with Asynchronous Ventilations Using an i-gel® versus 30:2 Approach during Simulated Out-of-Hospital Cardiac Arrest: Protocol for a Manikin Multicenter Randomized Controlled Trial

Loric Stuby, Laurent Jampen, Julien Sierro, Erik Paus, Thierry Spichiger, Laurent Suppan, David Thurre, Loric Stuby, Laurent Jampen, Julien Sierro, Erik Paus, Thierry Spichiger, Laurent Suppan, David Thurre

Abstract

The optimal airway management strategy during cardiopulmonary resuscitation is uncertain. In the case of out-of-hospital cardiac arrest, a high chest compression fraction is paramount to obtain the return of spontaneous circulation and improve survival and neurological outcomes. To improve this fraction, providing continuous chest compressions should be more effective than using the conventional 30:2 ratio. Airway management should, however, be adapted, since face-mask ventilation can hardly be carried out while continuous compressions are administered. The early insertion of a supraglottic device could therefore improve the chest compression fraction by allowing ventilation while maintaining compressions. This is a protocol for a multicenter, parallel, randomized simulation study. Depending on randomization, each team made up of paramedics and emergency medical technicians will manage the 10-min scenario according either to the standard approach (30 compressions with two face-mask ventilations) or to the experimental approach (continuous manual compressions with early insertion of an i-gel® supraglottic device to deliver asynchronous ventilations). The primary outcome will be the chest compression fraction during the first two minutes of cardiopulmonary resuscitation. Secondary outcomes will be chest compression fraction (per cycle and overall), compressions and ventilations quality, time to first shock and to first ventilation, user satisfaction, and providers' self-assessed cognitive load.

Keywords: CPR; airway; cardiac arrest; chest compression fraction; emergency medical services; i-gel®; paramedics; prehospital; resuscitation; supraglottic airway device.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Study flow chart.
Figure 2
Figure 2
Study sequence.

References

    1. Panchal Ashish R., Bartos Jason A., Cabañas José G., Donnino Michael W., Drennan Ian R., Hirsch Karen G., Kudenchuk Peter J., Kurz Michael C., Lavonas Eric J., Morley Peter T., et al. Part 3: Adult Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2020;142:S366–S468. doi: 10.1161/CIR.0000000000000916.
    1. Soar J., Böttiger B.W., Carli P., Couper K., Deakin C.D., Djärv T., Lott C., Olasveengen T., Paal P., Pellis T., et al. European Resuscitation Council 2020—Draft Guidelines for Public Comment. [(accessed on 8 January 2021)];:107. Available online:
    1. Kern Karl B., Hilwig Ronald W., Berg Robert A., Sanders Arthur B., Ewy Gordon A. Importance of Continuous Chest Compressions During Cardiopulmonary Resuscitation. Circulation. 2002;105:645–649. doi: 10.1161/hc0502.102963.
    1. Ewy G.A., Zuercher M., Hilwig R.W., Sanders A.B., Berg R.A., Otto C.W., Hayes M.M., Kern K.B. Improved Neurological Outcome with Continuous Chest Compressions Compared with 30:2 Compressions-to-Ventilations Cardiopulmonary Resuscitation in a Realistic Swine Model of out-of-Hospital Cardiac Arrest. Circulation. 2007;116:2525–2530. doi: 10.1161/CIRCULATIONAHA.107.711820.
    1. Rea T., Olsufka M., Yin L., Maynard C., Cobb L. The Relationship between Chest Compression Fraction and Outcome from Ventricular Fibrillation Arrests in Prolonged Resuscitations. Resuscitation. 2014;85:879–884. doi: 10.1016/j.resuscitation.2014.02.026.
    1. Vaillancourt C., Everson-Stewart S., Christenson J., Andrusiek D., Powell J., Nichol G., Cheskes S., Aufderheide T.P., Berg R., Stiell I.G. The Impact of Increased Chest Compression Fraction on Return of Spontaneous Circulation for Out-of-Hospital Cardiac Arrest Patients Not in Ventricular Fibrillation. Resuscitation. 2011;82:1501–1507. doi: 10.1016/j.resuscitation.2011.07.011.
    1. Uppiretla A.K., Gangalal G.M., Rao S., Don Bosco D., Shareef S.M., Sampath V. Effects of Chest Compression Fraction on Return of Spontaneous Circulation in Patients with Cardiac Arrest; A Brief Report. Adv. J. Emerg. Med. 2019;4 doi: 10.22114/ajem.v0i0.147.
    1. Christenson J., Andrusiek D., Everson-Stewart S., Kudenchuk P., Hostler D., Powell J., Callaway C.W., Bishop D., Vaillancourt C., Davis D., et al. Chest Compression Fraction Determines Survival in Patients with Out-of-Hospital Ventricular Fibrillation. Circulation. 2009;120:1241–1247. doi: 10.1161/CIRCULATIONAHA.109.852202.
    1. Vaillancourt C., Petersen A., Meier E.N., Christenson J., Menegazzi J.J., Aufderheide T.P., Nichol G., Berg R., Callaway C.W., Idris A.H., et al. The Impact of Increased Chest Compression Fraction on Survival for Out-of-Hospital Cardiac Arrest Patients with a Non-Shockable Initial Rhythm. Resuscitation. 2020;154:93–100. doi: 10.1016/j.resuscitation.2020.06.016.
    1. Wik L., Olsen J.-A., Persse D., Sterz F., Lozano M., Brouwer M.A., Westfall M., Souders C.M., Travis D.T., Herken U.R., et al. Why Do Some Studies Find That CPR Fraction Is Not a Predictor of Survival? Resuscitation. 2016;104:59–62. doi: 10.1016/j.resuscitation.2016.04.013.
    1. Bobrow B.J., Clark L.L., Ewy G.A., Chikani V., Sanders A.B., Berg R.A., Richman P.B., Kern K.B. Minimally Interrupted Cardiac Resuscitation by Emergency Medical Services for Out-of-Hospital Cardiac Arrest. JAMA. 2008;299:1158–1165. doi: 10.1001/jama.299.10.1158.
    1. Newell C., Grier S., Soar J. Airway and Ventilation Management during Cardiopulmonary Resuscitation and after Successful Resuscitation. Crit. Care. 2018;22:190. doi: 10.1186/s13054-018-2121-y.
    1. Kurz M.C., Prince D.K., Christenson J., Carlson J., Stub D., Cheskes S., Lin S., Aziz M., Austin M., Vaillancourt C., et al. Association of Advanced Airway Device with Chest Compression Fraction during Out-of-Hospital Cardiopulmonary Arrest. Resuscitation. 2016;98:35–40. doi: 10.1016/j.resuscitation.2015.10.011.
    1. Granfeldt A., Avis S.R., Nicholson T.C., Holmberg M.J., Moskowitz A., Coker A., Berg K.M., Parr M.J., Donnino M.W., Soar J., et al. Advanced Airway Management during Adult Cardiac Arrest: A Systematic Review. Resuscitation. 2019;139:133–143. doi: 10.1016/j.resuscitation.2019.04.003.
    1. Olasveengen T., Mancini M.B., Berg R.A., Brooks S., Castren M., Chung S.P., Considine J., Escalante R., Gazmuri R., Hatanaka T., et al. CPR: Chest Compression to Ventilation Ratio-EMS Delivered. Consensus on Science and Treatment Recommendation. Brussels, Belgium: International Liaison Committee on Resuscitation (ILCOR), Basic Life Support Task Force, 2017 July 30. CPR: Chest Compression to Ventilation Ratio—EMS Delivered (BLS): Systematic Review. [(accessed on 12 February 2021)]; Available online: .
    1. Saracoglu A., Saracoglu K. Advanced Airway Management in Out-of-Hospital Cardiac Arrest—To Intubate or Not to Intubate: A Narrative Review of the Existing Literature. Anaesthesiol. Intensive Ther. 2020;52:425–433. doi: 10.5114/ait.2020.101182.
    1. Buis M.L., Maissan I.M., Hoeks S.E., Klimek M., Stolker R.J. Defining the Learning Curve for Endotracheal Intubation Using Direct Laryngoscopy: A Systematic Review. Resuscitation. 2016;99:63–71. doi: 10.1016/j.resuscitation.2015.11.005.
    1. Chan M., Fehlmann C.A., Pasquier M., Suppan L., Savoldelli G.L. Endotracheal Intubation Success Rate in an Urban, Supervised, Resident-Staffed Emergency Mobile System: An 11-Year Retrospective Cohort Study. J. Clin. Med. 2020;9:238. doi: 10.3390/jcm9010238.
    1. Stone B.J., Chantler P.J., Baskett P.J. The Incidence of Regurgitation during Cardiopulmonary Resuscitation: A Comparison between the Bag Valve Mask and Laryngeal Mask Airway. Resuscitation. 1998;38:3–6. doi: 10.1016/S0300-9572(98)00068-9.
    1. Duckett J., Fell P., Han K., Kimber C., Taylor C. Introduction of the I-Gel Supraglottic Airway Device for Prehospital Airway Management in a UK Ambulance Service. Emerg. Med. J. 2014;31:505–507. doi: 10.1136/emermed-2012-202126.
    1. Wharton N.M., Gibbison B., Gabbott D.A., Haslam G.M., Muchatuta N., Cook T.M. I-Gel Insertion by Novices in Manikins and Patients. Anaesthesia. 2008;63:991–995. doi: 10.1111/j.1365-2044.2008.05542.x.
    1. Leventis C., Chalkias A., Sampanis M.A., Foulidou X., Xanthos T. Emergency Airway Management by Paramedics: Comparison between Standard Endotracheal Intubation, Laryngeal Mask Airway, and I-Gel. Eur. J. Emerg. Med. 2014;21:371–373. doi: 10.1097/MEJ.0000000000000101.
    1. Castle N., Owen R., Hann M., Naidoo R., Reeves D. Assessment of the Speed and Ease of Insertion of Three Supraglottic Airway Devices by Paramedics: A Manikin Study. Emerg. Med. J. 2010;27:860–863. doi: 10.1136/emj.2009.084343.
    1. Goliasch G., Ruetzler A., Fischer H., Frass M., Sessler D.I., Ruetzler K. Evaluation of Advanced Airway Management in Absolutely Inexperienced Hands: A Randomized Manikin Trial. Eur. J. Emerg. Med. 2013;20:310–314. doi: 10.1097/MEJ.0b013e328358455e.
    1. Ruetzler K., Roessler B., Potura L., Priemayr A., Robak O., Schuster E., Frass M. Performance and Skill Retention of Intubation by Paramedics Using Seven Different Airway Devices—A Manikin Study. Resuscitation. 2011;82:593–597. doi: 10.1016/j.resuscitation.2011.01.008.
    1. Chauhan G., Nayar P., Seth A., Gupta K., Panwar M., Agrawal N. Comparison of Clinical Performance of the I-Gel with LMA Proseal. J. Anaesthesiol. Clin. Pharmacol. 2013;29:56–60. doi: 10.4103/0970-9185.105798.
    1. Gabbott D.A., Beringer R. The IGEL Supraglottic Airway: A Potential Role for Resuscitation? Resuscitation. 2007;73:161–162. doi: 10.1016/j.resuscitation.2006.10.026.
    1. Middleton P.M., Simpson P.M., Thomas R.E., Bendall J.C. Higher Insertion Success with the I-Gel® Supraglottic Airway in out-of-Hospital Cardiac Arrest: A Randomised Controlled Trial. Resuscitation. 2014;85:893–897. doi: 10.1016/j.resuscitation.2014.02.021.
    1. Häske D., Gaier G., Heinemann N., Schempf B., Renz J.-U. Minimal Training for First Responders with the I-GelTM Leads to Successful Use in Prehospital Cardiopulmonary Resuscitation. Resuscitation. 2019;134:167–168. doi: 10.1016/j.resuscitation.2018.12.010.
    1. Häske D., Schempf B., Gaier G., Niederberger C. Performance of the I-GelTM during Pre-Hospital Cardiopulmonary Resuscitation. Resuscitation. 2013;84:1229–1232. doi: 10.1016/j.resuscitation.2013.04.025.
    1. Piegeler T., Roessler B., Goliasch G., Fischer H., Schlaepfer M., Lang S., Ruetzler K. Evaluation of Six Different Airway Devices Regarding Regurgitation and Pulmonary Aspiration during Cardio-Pulmonary Resuscitation (CPR)—A Human Cadaver Pilot Study. Resuscitation. 2016;102:70–74. doi: 10.1016/j.resuscitation.2016.02.017.
    1. Benger J.R., Kirby K., Black S., Brett S.J., Clout M., Lazaroo M.J., Nolan J.P., Reeves B.C., Robinson M., Scott L.J., et al. Effect of a Strategy of a Supraglottic Airway Device vs Tracheal Intubation During Out-of-Hospital Cardiac Arrest on Functional Outcome: The AIRWAYS-2 Randomized Clinical Trial. JAMA. 2018;320:779–791. doi: 10.1001/jama.2018.11597.
    1. Soar J., Berg K.M., Andersen L.W., Böttiger B.W., Cacciola S., Callaway C.W., Couper K., Cronberg T., D’Arrigo S., Deakin C.D., et al. Adult Advanced Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation. 2020;156:A80–A119. doi: 10.1016/j.resuscitation.2020.09.012.
    1. Nolan Jerry P., Maconochie I., Soar J., Olasveengen T.M., Greif R., Wyckoff M.H., Singletary E.M., Aickin R., Berg K.M., Mancini M.E., et al. Executive Summary: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 2020;142:S2–S27. doi: 10.1161/CIR.0000000000000890.
    1. Chan A.-W., Tetzlaff J.M., Gøtzsche P.C., Altman D.G., Mann H., Berlin J.A., Dickersin K., Hróbjartsson A., Schulz K.F., Parulekar W.R., et al. SPIRIT 2013 Explanation and Elaboration: Guidance for Protocols of Clinical Trials. BMJ. 2013;346:e7586. doi: 10.1136/bmj.e7586.
    1. Schulz K.F., Altman D.G., Moher D. CONSORT 2010 Statement: Updated Guidelines for Reporting Parallel Group Randomised Trials. BMJ. 2010;340:c332. doi: 10.1136/bmj.c332.
    1. Suppan L., Herren T., Taramarcaz V., Regard S., Martin-Achard S., Zamberg I., Larribau R., Niquille M., Mach F., Suppan M., et al. A Short Intervention Followed by an Interactive E-Learning Module to Motivate Medical Students to Enlist as First Responders: Protocol for a Prospective Implementation Study. JMIR Res. Protoc. 2020;9:e24664. doi: 10.2196/24664.
    1. Suppan L., Chan M., Gartner B., Regard S., Campana M., Chatellard G., Cottet P., Larribau R., Sarasin F.P., Niquille M. Evaluation of a Prehospital Rotation by Senior Residents: A Web-Based Survey. Healthcare. 2021;9:24. doi: 10.3390/healthcare9010024.
    1. Keamk—Create Random and Balanced Teams. [(accessed on 5 January 2021)]; Available online:
    1. Create a Blocked Randomisation List|Sealed Envelope. [(accessed on 6 December 2020)]; Available online: .
    1. Peyton J.W.R. Teaching & Learning in Medical Practice. Manticore Europe Ltd.; Heronsgate Rickmansworth, Herts: 1998.
    1. Stuby L., Currat L., Gartner B., Mayoraz M., Harbarth S., Suppan L., Suppan M. Impact of Face-to-Face Teaching in Addition to Electronic Learning on Personal Protective Equipment Doffing Proficiency in Student Paramedics: Protocol for a Randomized Controlled Trial. [(accessed on 6 December 2020)];JMIR Preprints. Available online: .
    1. Giacomino K., Caliesch R., Sattelmayer K.M. The Effectiveness of the Peyton’s 4-Step Teaching Approach on Skill Acquisition of Procedures in Health Professions Education: A Systematic Review and Meta-Analysis with Integrated Meta-Regression. PeerJ. 2020;8 doi: 10.7717/peerj.10129.
    1. Algorithms. [(accessed on 13 January 2021)]; Available online: .
    1. Paas F.G.W.C., Van Merriënboer J.J.G. The Efficiency of Instructional Conditions: An Approach to Combine Mental Effort and Performance Measures. Hum. Factors. 1993;35:737–743. doi: 10.1177/001872089303500412.
    1. Pawar S., Jacques T., Deshpande K., Pusapati R., Meguerdichian M.J. Evaluation of Cognitive Load and Emotional States during Multidisciplinary Critical Care Simulation Sessions. BMJ STEL. 2018;4:87–91. doi: 10.1136/bmjstel-2017-000225.
    1. Dörges V., Ocker H., Hagelberg S., Wenzel V., Schmucker P. Optimisation of Tidal Volumes given with Self-Inflatable Bags without Additional Oxygen. Resuscitation. 2000;43:195–199. doi: 10.1016/S0300-9572(99)00148-3.
    1. Dörges V., Ocker H., Hagelberg S., Wenzel V., Idris A.H., Schmucker P. Smaller Tidal Volumes with Room-Air Are Not Sufficient to Ensure Adequate Oxygenation during Bag-Valve-Mask Ventilation. Resuscitation. 2000;44:37–41. doi: 10.1016/S0300-9572(99)00161-6.
    1. Baskett P., Nolan J., Parr M. Tidal Volumes Which Are Perceived to Be Adequate for Resuscitation. Resuscitation. 1996;31:231–234. doi: 10.1016/0300-9572(96)00994-X.
    1. Aramendi E., Lu Y., Chang M.P., Elola A., Irusta U., Owens P., Idris A.H. A Novel Technique to Assess the Quality of Ventilation during Pre-Hospital Cardiopulmonary Resuscitation. Resuscitation. 2018;132:41–46. doi: 10.1016/j.resuscitation.2018.08.016.
    1. Serpa Neto A., Cardoso S.O., Manetta J.A., Pereira V.G.M., Espósito D.C., de Pasqualucci M.O.P., Damasceno M.C.T., Schultz M.J. Association between Use of Lung-Protective Ventilation with Lower Tidal Volumes and Clinical Outcomes Among Patients without Acute Respiratory Distress Syndrome: A Meta-Analysis. JAMA. 2012;308:1651. doi: 10.1001/jama.2012.13730.
    1. Christiansen T., Lauritsen J. EpiData Software. [(accessed on 18 December 2020)]; Available online:
    1. Swiss Confederation CC 810.30 Federal Act of 30 September 2011 on Research Involving Human Beings (Human Research Act, HRA) [(accessed on 24 November 2020)]; Available online: .
    1. World Medical Association World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA. 2013;310:2191–2194. doi: 10.1001/jama.2013.281053.
    1. International Conference on Harmonisation Good Clinical Practice. [(accessed on 24 November 2020)]; Available online: .
    1. Mendeley Data. [(accessed on 21 December 2020)]; Available online:
    1. Siebert J.N., Ehrler F., Combescure C., Lacroix L., Haddad K., Sanchez O., Gervaix A., Lovis C., Manzano S. A Mobile Device App to Reduce Time to Drug Delivery and Medication Errors During Simulated Pediatric Cardiopulmonary Resuscitation: A Randomized Controlled Trial. J. Med. Internet Res. 2017;19:e31. doi: 10.2196/jmir.7005.
    1. Fernández-Ayuso D., Fernández-Ayuso R., Del-Campo-Cazallas C., Pérez-Olmo J.L., Matías-Pompa B., Fernández-Carnero J., Calvo-Lobo C. The Modification of Vital Signs According to Nursing Students’ Experiences Undergoing Cardiopulmonary Resuscitation Training via High-Fidelity Simulation: Quasi-Experimental Study. JMIR Serious Games. 2018;6:e11061. doi: 10.2196/11061.
    1. Sahu S., Lata I. Simulation in Resuscitation Teaching and Training, an Evidence Based Practice Review. J. Emerg. Trauma Shock. 2010;3:378–384. doi: 10.4103/0974-2700.70758.
    1. Bjørshol C., Myklebust H., Nilsen K., Hoff T., Bjørkli C., EIllguth E., Søreide E., Sunde K. Effect of Socioemotional Stress on the Quality of Cardiopulmonary Resuscitation during Advanced Life Support in a Randomized Manikin Study. Crit. Care Med. 2011;39:300–304. doi: 10.1097/CCM.0b013e3181ffe100.
    1. Judd B.K., Alison J.A., Waters D., Gordon C.J. Comparison of Psychophysiological Stress in Physiotherapy Students Undertaking Simulation and Hospital-Based Clinical Education. Simul. Healthc. 2016;11:271–277. doi: 10.1097/SIH.0000000000000155.
    1. Judd B.K., Currie J., Dodds K.L., Fethney J., Gordon C.J. Registered Nurses Psychophysiological Stress and Confidence during High-Fidelity Emergency Simulation: Effects on Performance. Nurse Educ. Today. 2019;78:44–49. doi: 10.1016/j.nedt.2019.04.005.

Source: PubMed

Подписаться