Prevalence of sarcopenia in community-dwelling older people in the UK using the European Working Group on Sarcopenia in Older People (EWGSOP) definition: findings from the Hertfordshire Cohort Study (HCS)

Harnish P Patel, Holly Emma Syddall, Karen Jameson, Sian Robinson, Hayley Denison, Helen C Roberts, Mark Edwards, Elaine Dennison, Cyrus Cooper, Avan Aihie Sayer, Harnish P Patel, Holly Emma Syddall, Karen Jameson, Sian Robinson, Hayley Denison, Helen C Roberts, Mark Edwards, Elaine Dennison, Cyrus Cooper, Avan Aihie Sayer

Abstract

Introduction: sarcopenia is associated with adverse health outcomes. The aim of this study was to describe the prevalence of sarcopenia in community-dwelling older people in the UK using the European Working Group on Sarcopenia in Older People (EWGSOP) consensus definition.

Methods: we applied the EWGSOP definition to 103 community-dwelling men participating in the Hertfordshire Sarcopenia Study (HSS) using both the lowest third of dual-energy X-ray absorptiometry (DXA) lean mass (LM) and the lowest third of skin-fold-based fat-free mass (FFM) as markers of low muscle mass. We also used the FFM approach among 765 male and 1,022 female participants in the Hertfordshire Cohort Study (HCS). Body size, physical performance and self-reported health were compared in participants with and without sarcopenia.

Results: the prevalence of sarcopenia in HSS men (mean age 73 years) was 6.8% and 7.8% when using the lowest third of DXA LM and FFM, respectively. DXA LM and FFM were highly correlated (0.91, P < 0.001). The prevalence of sarcopenia among the HCS men and women (mean age 67 years) was 4.6% and 7.9%, respectively. HSS and HCS participants with sarcopenia were shorter, weighed less and had worse physical performance. HCS men and women with sarcopenia had poorer self-reported general health and physical functioning scores.

Conclusions: this is one of the first studies to describe the prevalence of sarcopenia in UK community-dwelling older people. The EWGSOP consensus definition was of practical use for sarcopenia case finding. The next step is to use this consensus definition in other ageing cohorts and among older people in a range of health-care settings.

References

    1. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39:412–23. .
    1. Di Monaco M, Vallero F, Di Monaco R, Tappero R. Prevalence of sarcopenia and its association with osteoporosis in 313 older women following a hip fracture. Arch Gerontol Geriatr. 2011;52:71–4. .
    1. Gale CR, Martyn CN, Cooper C, Sayer AA. Grip strength, body composition, and mortality. Int J Epidemiol. 2007;36:228–35.
    1. Rantanen T, Guralnik JM, Foley D, et al. Midlife hand grip strength as a predictor of old age disability. JAMA. 1999;281:558–60. .
    1. Sayer AA, Syddall HE, Dennison EM, et al. Grip strength and the metabolic syndrome: findings from the Hertfordshire Cohort Study. QJM. 2007;100:707–13. .
    1. Doherty TJ. Invited review: aging and sarcopenia. J Appl Physiol. 2003;95:1717–27.
    1. Faulkner JA, Larkin LM, Claflin DR, Brooks SV. Age-related changes in the structure and function of skeletal muscles. Clin Exp Pharmacol Physiol. 2007;34:1091–6. .
    1. Masanes F, Culla A, Navarro-Gonzalez M, et al. Prevalence of sarcopenia in healthy community-dwelling elderly in an urban area of Barcelona (Spain) J Nutr Health Aging. 2012;16:184–7. .
    1. Garatachea N, Lucia A. Genes and the ageing muscle: a review on genetic association studies. Age (Dordr) 2011 , Oct 27. [Epub ahead of print]
    1. Paddon-Jones D, Short KR, Campbell WW, Volpi E, Wolfe RR. Role of dietary protein in the sarcopenia of aging. Am J Clin Nutr. 2008;87:1562S–6S.
    1. Vincent KR, Braith RW, Feldman RA, et al. Resistance exercise and physical performance in adults aged 60 to 83. J Am Geriatr Soc. 2002;50:1100–7. .
    1. Sayer AA, Syddall HE, Gilbody HJ, Dennison EM, Cooper C. Does sarcopenia originate in early life? Findings from the Hertfordshire cohort study. J Gerontol A Biol Sci Med Sci. 2004;59:M930–M934. .
    1. Baumgartner RN, Koehler KM, Gallagher D, et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147:755–63. .
    1. Castillo EM, Goodman-Gruen D, Kritz-Silverstein D, et al. Sarcopenia in elderly men and women: the Rancho Bernardo study. Am J Prev Med. 2003;25:226–31. .
    1. Chien MY, Huang TY, Wu YT. Prevalence of sarcopenia estimated using a bioelectrical impedance analysis prediction equation in community-dwelling elderly people in Taiwan. J Am Geriatr Soc. 2008;56:1710–5. .
    1. Melton LJ, III, Khosla S, Crowson CS, et al. Epidemiology of sarcopenia. J Am Geriatr Soc. 2000;48:625–30.
    1. Tichet J, Vol S, Goxe D, et al. Prevalence of sarcopenia in the French senior population. J Nutr Health Aging. 2008;12:202–6. .
    1. Fielding RA, Vellas B, Evans WJ, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12:249–56. .
    1. Syddall HE, Sayer AA, Dennison EM, et al. Cohort profile: the Hertfordshire cohort study. Int J Epidemiol. 2005;34:1234–42. .
    1. Patel HP, Syddall HE, Martin HJ, et al. Hertfordshire sarcopenia study: design and methods. BMC Geriatr. 2010;10:43. .
    1. Fidanza F. Anthropometric methodology. In: Fidanza F, editor. Nutritional Status Assessment. London: Chapman Hall; 1991. pp. 1–62.
    1. Martin HJ, Syddall HE, Dennison EM, Cooper C, Sayer AA. Physical performance and physical activity in older people: are developmental influences important? Gerontology. 2009;55:186–93. .
    1. Roberts HC, Denison HJ, Martin HJ, et al. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing. 2011;40:423–9. .
    1. Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr. 1974;32:77–97. .
    1. Iannuzzi-Sucich M, Prestwood KM, Kenny AM. Prevalence of sarcopenia and predictors of skeletal muscle mass in healthy, older men and women. J Gerontol A Biol Sci Med Sci. 2002;57:M772–M777. .
    1. Bijlsma AY, Meskers CG, Ling CH, et al. Defining sarcopenia: the impact of different diagnostic criteria on the prevalence of sarcopenia in a large middle aged cohort. Age (Dordr) 2012 , Feb 8. [Epub ahead of print].
    1. Landi F, Russo A, Liperoti R, et al. Midarm muscle circumference, physical performance and mortality: results from the aging and longevity study in the Sirente geographic area (ilSIRENTE study) Clin Nutr. 2010;29:441–7. .
    1. Sayer AA, Syddall HE, Martin HJ, et al. Is grip strength associated with health-related quality of life? Findings from the Hertfordshire Cohort Study. Age Ageing. 2006;35:409–15. .
    1. Kull M, Kallikorm R, Lember M. Impact of a new sarco-osteopenia definition on health-related quality of life in a population-based cohort in Northern Europe. J Clin Densitom. 2012;15:32–8. .
    1. Muscaritoli M, Anker SD, Argiles J, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) ‘cachexia-anorexia in chronic wasting diseases’ and ‘nutrition in geriatrics. Clin Nutr. 2010;29:154–9. .
    1. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002;50:889–96. .

Source: PubMed

Подписаться