Postural performance and plantar cutaneous vibration perception in patients with idiopathic normal pressure hydrocephalus

Tobias Heß, Thomas L Milani, Jürgen Meixensberger, Matthias Krause, Tobias Heß, Thomas L Milani, Jürgen Meixensberger, Matthias Krause

Abstract

Objective: To investigate whether impaired plantar cutaneous vibration perception contributes to postural disturbance in idiopathic normal pressure hydrocephalus (iNPH).

Methods: Three different groups were tested: iNPH-patients (iNPH), iNPH-patients after surgical shunt therapy (iNPH shunt), and healthy subjects (HS). Postural performance was quantified during quiescent stance on a pressure distribution platform. Vibration perception threshold (VPT) was measured using a modified vibration exciter to apply stimuli to the plantar foot.

Results: Regarding postural performance, iNPH showed significantly higher values for all investigated center of pressure (COP)-parameters compared to HS, which suggests impaired postural control. Shunted patients presented a tendency towards better postural control in contrast to non-shunted patients. VPTs did not differ significantly between all investigated groups, which suggests comparable plantar cutaneous vibration perception.

Conclusion: Patients with iNPH suffer from poor postural stability, whereas shunting tends to affect postural performance positively. Plantar cutaneous vibration perception seems to be comparable between all investigated study groups. Consequently, postural disturbance in iNPH cannot clearly be ascribed to defective plantar cutaneous input.

Keywords: Idiopathic normal pressure hydrocephalus; Plantar cutaneous vibration perception; Postural performance; Shunt.

Conflict of interest statement

The authors declare no conflict of interest.

© 2020 The Author(s).

Figures

Figure 1
Figure 1
Plantar vibration examination at the first metatarsophalangeal joint.
Figure 2
Figure 2
Group comparisons including statistically significant p-values for COP-parameters: A) 95% confidence area (ellipse-shaped area, comprising 95 % of COP-data); B) range AP (range of captured COP-data along AP direction); C) range ML (range of captured COP-data along ML direction); D) v mean (mean velocity calculated over each frame); E) v mean AP (mean velocity calculated over each frame in AP direction); F) v mean ML (mean velocity calculated over each frame in ML direction); the level of significance was Bonferroni adjusted to α = 0.0167.
Figure 3
Figure 3
VPT amplitude group comparison for both anatomical locations: A) heel, B) met I; the level of significance was Bonferroni adjusted to α = 0.0083. No significant differences could be found.

References

    1. Czerwosz L., Szczepek E., Blaszczyk J.W., Sokolowska B., Dmitruk K., Dudzinski K., Jurkiewicz J., Czernicki Z. Analysis of postural sway in patients with normal pressure hydrocephalus: effects of shunt implantation. Eur. J. Med. Res. 2009;14(Suppl 4):53.
    1. Bateman G.A. The pathophysiology of idiopathic normal pressure hydrocephalus: cerebral ischemia or altered venous hemodynamics? AJNR Am. J. Neuroradiol. 2008;29(1):198–203.
    1. Kuba H., Inamura T., Ikezaki K., Inoha S., Nakamizo A., Shono T., Fukui K., Fukui M. Gait disturbance in patients with low pressure hydrocephalus. J. Clin. Neurosci. 2002;9(1):33–36.
    1. Pindrik J., Bastian A., Rigamonti D. Pathophysiology of gait dysfunction in normal pressure hydrocephalus. In: Rigamonti D., editor. Adult Hydrocephalus. Cambridge University Press; Cambridge: 2014. pp. 63–69.
    1. Relkin N., Katzen H. In: The Pathophysiologic Basis of Cognitive Dysfunction in Idiopathic normal Pressure Hydrocephalus. Rigamonti D., editor. Cambridge University Press; 2014. pp. 70–79. (Adult Hydrocephalus).
    1. Relkin N., Marmarou A., Klinge P., Bergsneider M., Black P.M. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery. 2005;57(3 Suppl):S4–S16. discussion ii-v.
    1. Hakim S., Adams R.D. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. J. Neurol. Sci. 1965;2(4):307–327.
    1. Bäcklund T., Frankel J., Israelsson H., Malm J., Sundström N. Trunk sway in idiopathic normal pressure hydrocephalus-Quantitative assessment in clinical practice. Gait Posture. 2017;54:62–70.
    1. Lundin F., Ledin T., Wikkelso C., Leijon G. Postural function in idiopathic normal pressure hydrocephalus before and after shunt surgery: a controlled study using computerized dynamic posturography (EquiTest) Clin. Neurol. Neurosurg. 2013;115(9):1626–1631.
    1. Sturnieks D.L., St George R., Lord S.R. Balance disorders in the elderly. Neurophysiol. Clin. 2008;38(6):467–478.
    1. Estañol B.V. Gait apraxia in communicating hydrocephalus. J. Neurol. Neurosurg. Psychiatry. 1981;44(4):305–308.
    1. Wikkelsö C., Blomsterwall E., Frisén L. Subjective visual vertical and Romberg's test correlations in hydrocephalus. J. Neurol. 2003;250(6):741–745.
    1. Blomsterwall E., Svantesson U., Carlsson U., Tullberg M., Wikkelso C. Postural disturbance in patients with normal pressure hydrocephalus. Acta Neurol. Scand. 2000;102(5):284–291.
    1. Asensio-Sánchez V.M., Martín-Prieto A. Colour vision abnormality as the only manifestation of normal pressure hydrocephalus. Arch. Soc. Esp. Oftalmol. 2018;93(1):35–37.
    1. Abram K., Bohne S., Bublak P., Karvouniari P., Klingner C.M., Witte O.W., Guntinas-Lichius O., Axer H. The effect of spinal tap test on different sensory modalities of postural stability in idiopathic normal pressure hydrocephalus. Dement. Geriatr. Cogn. Dis. Extra. 2016;6(3):447–457.
    1. Böttcher N., Bremova T., Feil K., Heinze C., Schniepp R., Strupp M. Normal pressure hydrocephalus: increase of utricular input in responders to spinal tap test. Clin. Neurophysiol. 2016;127(5):2294–2301.
    1. Schnitzler A., Seitz R.J., Freund H.-J. 2000. The Somatosensory System; pp. 291–329.
    1. Germano A.M.C., Schmidt D., Milani T.L. Effects of hypothermically reduced plantar skin inputs on anticipatory and compensatory balance responses. BMC Neurosci. 2016;17(1):41.
    1. Germano A.M.C., Heß T., Schmidt D., Milani T.L. Effects of plantar hypothermia on quasi-static balance: two different hypothermic procedures. Gait Posture. 2018;60:194–199.
    1. Germano A.M.C., Schlee G., Milani T.L. Effect of cooling foot sole skin receptors on achilles tendon reflex. Muscle Nerve. 2016;53(6):965–971.
    1. Nutt J.G. Higher-level gait disorders: an open frontier. Mov. Disord. 2013;28(11):1560–1565.
    1. Qiu F., Cole M.H., Davids K.W., Hennig E.M., Silburn P.A., Netscher H., Kerr G.K., van Beers R.J. Effects of textured insoles on balance in people with Parkinson’s disease. PloS One. 2013;8(12)
    1. de Morais Barbosa C., Barros Bértolo M., Zonzini Gaino J., Davitt M., Sachetto Z., de Paiva Magalhães E. The effect of flat and textured insoles on the balance of primary care elderly people: a randomized controlled clinical trial. CIA. 2018;13:277–284.
    1. Kavounoudias A., Roll R., Roll J.-P. Specific whole-body shifts induced by frequency-modulated vibrations of human plantar soles. Neurosci. Lett. 1999;266(3):181–184.
    1. Kavounoudias A., Roll R., Roll J.-P. Foot sole and ankle muscle inputs contribute jointly to human erect posture regulation. J. Physiol. 2001;532(3):869–878.
    1. Mahr C.V., Dengl M., Nestler U., Reiss-Zimmermann M., Eichner G., Preuss M., Meixensberger J. Idiopathic normal pressure hydrocephalus: diagnostic and predictive value of clinical testing, lumbar drainage, and CSF dynamics. J. Neurosurg. 2016;125(3):591–597.
    1. Eils E., Behrens S., Mers O., Thorwesten L., Völker K., Rosenbaum D. Reduced plantar sensation causes a cautious walking pattern. Gait Posture. 2004;20(1):54–60.
    1. Toma S., Nakajima Y. Response characteristics of cutaneous mechanoreceptors to vibratory stimuli in human glabrous skin. Neurosci. Lett. 1995;195(1):61–63.
    1. Hagander L.G., Midani H.A., Kuskowski M.A., Parry G.J.G. Quantitative sensory testing: effect of site and pressure on vibration thresholds. Clin. Neurophysiol. 2000;111(6):1066–1069.
    1. Mildren R.L., Strzalkowski N.D.J., Bent L.R. Foot sole skin vibration perceptual thresholds are elevated in a standing posture compared to sitting. Gait Posture. 2016;43:87–92.
    1. Blomsterwall E., Frisén L., Wikkelsö C. Postural function and subjective eye level in patients with idiopathic normal pressure hydrocephalus. J. Neurol. 2011;258(7):1341–1346.
    1. Soelberg Sørensen P., Jansen E.C., Gjerris F. Motor disturbances in normal-pressure hydrocephalus. Special reference to stance and gait. Arch. Neurol. 1986;43(1):34–38.
    1. Nikaido Y., Akisue T., Kajimoto Y., Tucker A., Kawami Y., Urakami H., Iwai Y., Sato H., Nishiguchi T., Hinoshita T., Kuroda K., Ohno H., Saura R. Postural instability differences between idiopathic normal pressure hydrocephalus and Parkinson's disease. Clin. Neurol. Neurosurg. 2018;165:103–107.
    1. Stolze H., Kuhtz-Buschbeck J.P., Drücke H., Jöhnk K., Diercks C., Palmié S., Mehdorn H.M., Illert M., Deuschl G. Gait analysis in idiopathic normal pressure hydrocephalus – which parameters respond to the CSF tap test? Clin. Neurophysiol. 2000;111(9):1678–1686.
    1. Kim J.-W., Kwon Y., Jeon H.-M., Bang M.-J., Jun J.-H., Eom G.-M., Lim D.-H. Feet distance and static postural balance: implication on the role of natural stance. Bio Med. Mater. Eng. 2014;24(6):2681–2688.
    1. Sasaki H., Ishii K., Kono A.K., Miyamoto N., Fukuda T., Shimada K., Ohkawa S., Kawaguchi T., Mori E. Cerebral perfusion pattern of idiopathic normal pressure hydrocephalus studied by SPECT and statistical brain mapping. Ann. Nucl. Med. 2007;21(1):39–45.
    1. Torsnes L., Blafjelldal V., Poulsen F.R. 2014. Treatment and Clinical Outcome in Patients with Idiopathic normal Pressure Hydrocephalus-Aa Systematic Review. Denmark.
    1. Meier U.a.L.J. Brain Edema XIII. Springer Vienna; Vienna: 2006. Clinical outcome of patients with idiopathic normal pressure hydrocephalus three years after shunt implantation; pp. 377–380.
    1. Kalani M.Y.S., Turner J.D., Nakaji P. Treatment of refractory low-pressure hydrocephalus with an active pumping negative-pressure shunt system. J. Clin. Neurosci. 2013;20(3):462–466.
    1. Woolf C.J., Ma Q. Nociceptors--noxious stimulus detectors. Neuron. 2007;55(3):353–364.
    1. Zippenfennig C., Niklaus L., Karger K., Milani T.L. Subliminal electrical and mechanical stimulation does not improve foot sensitivity in healthy elderly subjects. Clin. Neurophysiol. Prac. 2018;3:151–158.
    1. Holowka N.B., Wynands B., Drechsel T.J., Yegian A.K., Tobolsky V.A., Okutoyi P., Mang'eni Ojiambo R., Haile D.W., Sigei T.K., Zippenfennig C., Milani T.L., Lieberman D.E. Foot callus thickness does not trade off protection for tactile sensitivity during walking. Nature. 2019;571(7764):261–264.

Source: PubMed

Подписаться