Effects of 120 g/h of Carbohydrates Intake during a Mountain Marathon on Exercise-Induced Muscle Damage in Elite Runners

Aitor Viribay, Soledad Arribalzaga, Juan Mielgo-Ayuso, Arkaitz Castañeda-Babarro, Jesús Seco-Calvo, Aritz Urdampilleta, Aitor Viribay, Soledad Arribalzaga, Juan Mielgo-Ayuso, Arkaitz Castañeda-Babarro, Jesús Seco-Calvo, Aritz Urdampilleta

Abstract

Background-exercise-induced muscle damage (EIMD) and internal exercise load are increased after competing in ultraendurance events such as mountain marathons. Adequate carbohydrate (CHO) intake during exercise optimizes athletic performance and could limit EIMD, reduce internal exercise load and, thus, improve recovery. Therefore, the aim of this study was to research into and compare the effects of high CHO intake (120 g/h) in terms of CHO intake recommendation (90 g/h) and regular CHO intake performed by ultraendurance athletes (60 g/h) during a mountain marathon, on exercise load and EIMD markers (creatine kinase (CK), lactate dehydrogenase (LDH), glutamic oxaloacetic transaminase (GOT), urea and creatinine). Materials and Methods-a randomized trial was carried out on 20 male elite runners who had previously undertaken nutritional and gut training, and who consumed different CHO dosages according to experimental (EXP-120 g/h), control (CON-90 g/h) and low CHO intake (LOW-60 g/h) groups during a ~4000 m cumulative slope mountain marathon. EIMD markers were analyzed before the race and 24 h afterwards. Internal exercise load was calculated based on rate of perceived exertion (RPE) during and after the marathon event. Results-internal exercise load during the mountain marathon was significantly lower (p = 0.019; η2p = 0.471) in EXP (3805 ± 281 AU) compared to LOW (4688 ± 705 AU) and CON (4692 ± 716 AU). Moreover, results revealed that the EXP group evidenced significantly lower CK (p = 0.019; η2p = 0.373), LDH (p < 0.001; η2p = 0.615) and GOT (p = 0.003; η2p = 0.500) values 24 h after the mountain marathon race compared to LOW and CON. Along these lines, EIMD and exercise load evidenced a close correlation (R = 0.742; p < 0.001). Conclusion: High CHO intake (120 g/h) during a mountain marathon could limit the EIMD observed by CK, LDH and GOT and internal exercise load compared to CHO ingestion of 60 and 90 g/h.

Keywords: athletic performance; dietary intake; glycogen; muscle recovery.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow of participants. GI, gastrointestinal.
Figure 2
Figure 2
Timing of carbohydrate ingestion during the race for each experimental group.
Figure 3
Figure 3
Profile of the trail marathon race.
Figure 4
Figure 4
Internal exercise load during the mountain marathon in the different groups. Data are presented as mean ± standard deviation. p: Differences by one factor univariant ANOVA tests. * Significant differences from LOW and CON using Bonferroni tests in accordance with one factor univariant ANOVA tests.
Figure 5
Figure 5
Percentage of EIMD marker changes during the study in the low carbohydrate group (LOW), control group (CON) and experimental group (EXP). Data are presented as mean ± standard deviation. y-axis on the far right indicates % change for creatine kinase (CK) only. * Significant differences from LOW and CON using Bonferroni tests in accordance with one factor univariant ANOVA tests.
Figure 6
Figure 6
Pearson’s correlation between internal exercise load and CK percentage change.

References

    1. Hoppel F., Calabria E., Pesta D., Kantner-Rumplmair W., Gnaiger E., Burtscher M. Physiological and Pathophysiological Responses to Ultramarathon Running in Non-elite Runners. Front. Physiol. 2019;10:1300. doi: 10.3389/fphys.2019.01300.
    1. Clemente-Suárez V. Modificaciones de parámetros bioquímicos después de una maratón de montaña. Eur. J. Hum. Mov. 2011;27:75–83.
    1. Knechtle B., Nikolaidis P.T. Physiology and pathophysiology in ultramarathon running. Front. Physiol. 2018;9:634. doi: 10.3389/fphys.2018.00634.
    1. Fornasiero A., Savoldelli A., Fruet D., Boccia G., Pellegrini B., Schena F. Physiological intensity profile, exercise load and performance predictors of a 65-km mountain ultramarathon. J. Sports Sci. 2018;36:1287–1295. doi: 10.1080/02640414.2017.1374707.
    1. Owens D.J., Twist C., Cobley J.N., Howatson G., Close G.L. Exercise-induced muscle damage: What is it, what causes it and what are the nutritional solutions? Eur. J. Sport Sci. 2019;19:71–85. doi: 10.1080/17461391.2018.1505957.
    1. Stellingwerf T. Case study: Nutrition and training periodization in three elite marathon runners. Int. J. Sport Nutr. Exerc. Metab. 2012;22:392–400. doi: 10.1123/ijsnem.22.5.392.
    1. Roos L., Taube W., Tuch C., Frei K.M., Wyss T. Factors That Influence the Rating of Perceived Exertion after Endurance Training. Int. J. Sports Physiol. Perform. 2018;13:1042–1049. doi: 10.1123/ijspp.2017-0707.
    1. Haddad M., Stylianides G., Djaoui L., Dellal A., Chamari K. Session-RPE Method for Training Load Monitoring: Validity, Ecological Usefulness, and Influencing Factors. Front. Neurosci. 2017;11:612. doi: 10.3389/fnins.2017.00612.
    1. Gavin J.P., Myers S.D., Willems M.E.T. The effect of glycogen reduction on cardiorespiratory and metabolic responses during downhill running. Eur. J. Appl. Physiol. 2015;115:1125–1133. doi: 10.1007/s00421-014-3094-4.
    1. Millet G.Y., Tomazin K., Verges S., Vincent C., Bonnefoy R., Boisson R.C., Gergelé L., Féasson L., Martin V. Neuromuscular consequences of an extreme mountain ultramarathon. PLoS ONE. 2011;6:e17059. doi: 10.1371/journal.pone.0017059.
    1. Halson S.L. Monitoring Training Load to Understand Fatigue in Athletes. Sports Med. 2014;44:139–147. doi: 10.1007/s40279-014-0253-z.
    1. Borresen J., Lambert M.I. Quantifying training load: A comparison of subjective and objective methods. Int. J. Sports Physiol. Perform. 2008;3:16–30. doi: 10.1123/ijspp.3.1.16.
    1. Brancaccio P., Maffulli N., Limongelli F.M. Creatine kinase monitoring in sport medicine. Br. Med. Bull. 2007;81–82:209–230. doi: 10.1093/bmb/ldm014.
    1. Brancaccio P., Lippi G., Maffulli N. Biochemical markers of muscular damage. Clin. Chem. Lab. Med. 2010;48:757–767. doi: 10.1515/CCLM.2010.179.
    1. Peake J.M., Neubauer O., Gatta P.A.D., Nosaka K. Muscle damage and inflammation during recovery from exercise. J. Appl. Physiol. 2017;122:559–570. doi: 10.1152/japplphysiol.00971.2016.
    1. Sorichter S., Puschendorf B., Mair J. Skeletal muscle injury induced by eccentric muscle action: Muscle proteins as markers of muscle fiber injury. Exerc. Immunol. Rev. 1999;5:5–21.
    1. Tee J.C., Bosch A.N., Lambert M.I. Metabolic consequences of exercise-induced muscle damage. Sports Med. 2007;37:827–836. doi: 10.2165/00007256-200737100-00001.
    1. Fatouros I.G., Jamurtas A.Z. Insights into the molecular etiology of exercise-induced inflammation: Opportunities for optimizing performance. J. Inflamm. Res. 2016;9:175–186. doi: 10.2147/JIR.S114635.
    1. Bernat-Adell M.D., Collado-Boira E.J., Moles-Julio P., Panizo-González N., Martínez-Navarro I., Hernando-Fuster B., Hernando-Domingo C. Recovery of Inflammation, Cardiac, and Muscle Damage Biomarkers after Running a Marathon. J. Strength Cond. Res. 2019 doi: 10.1519/JSC.0000000000003167.
    1. Bird S.R., Linden M., Hawley J.A. Acute changes to biomarkers as a consequence of prolonged strenuous running. Ann. Clin. Biochem. 2014;51:137–150. doi: 10.1177/0004563213492147.
    1. Da Ponte A., Giovanelli N., Antonutto G., Nigris D., Curcio F., Cortese P., Lazzer S. Changes in cardiac and muscle biomarkers following an uphill-only marathon. Res. Sports Med. 2018;26:100–111. doi: 10.1080/15438627.2017.1393750.
    1. Shin K.-A., Park K.D., Ahn J., Park Y., Kim Y.-J. Comparison of Changes in Biochemical Markers for Skeletal Muscles, Hepatic Metabolism, and Renal Function after Three Types of Long-distance Running: Observational Study. Medicine. 2016;95:e3657. doi: 10.1097/MD.0000000000003657.
    1. Lippi G., Schena F., Salvagno G.L., Montagnana M., Gelati M., Tarperi C., Banfi G., Guidi G.C. Acute variation of biochemical markers of muscle damage following a 21-km, half-marathon run. Scand. J. Clin. Lab. Investig. 2008;68:667–672. doi: 10.1080/00365510802126844.
    1. Nielsen J., Ørtenblad N. Physiological aspects of the subcellular localization of glycogen in skeletal muscle. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2013;38:91–99. doi: 10.1139/apnm-2012-0184.
    1. Ørtenblad N., Nielsen J. Muscle glycogen and cell function--Location, location, location. Scand. J. Med. Sci. Sports. 2015;25(Suppl. 4):34–40.
    1. Ørtenblad N., Nielsen J., Saltin B., Holmberg H.-C. Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle. J. Physiol. 2011;589:711–725. doi: 10.1113/jphysiol.2010.195982.
    1. Clarkson P.M., Hubal M.J. Exercise-induced muscle damage in humans. Am. J. Phys. Med. Rehabil. 2002;81:S52–S69. doi: 10.1097/00002060-200211001-00007.
    1. Kano Y., Sonobe T., Inagaki T., Sudo M., Poole D.C. Mechanisms of exercise-induced muscle damage and fatigue: Intracellular calcium accumulation. J. Phys. Fit. Sports Med. 2012;1:505–512. doi: 10.7600/jpfsm.1.505.
    1. Bishop N.C., Gleeson M., Nicholas C.W., Ali A. Influence of carbohydrate supplementation on plasma cytokine and neutrophil degranulation responses to high intensity intermittent exercise. Int. J. Sport Nutr. Exerc. Metab. 2002;12:145–156. doi: 10.1123/ijsnem.12.2.145.
    1. Nieman D.C., Dumke C.I., Henson D.A., McAnulty S.R., McAnulty L.S., Lind R.H., Morrow J.D. Immune and oxidative changes during and following the Western States Endurance Run. Int. J. Sports Med. 2003;24:541–547.
    1. Nybo L. CNS fatigue and prolonged exercise: Effect of glucose supplementation. Med. Sci. Sports Exerc. 2003;35:589–594. doi: 10.1249/01.MSS.0000058433.85789.66.
    1. Tiller N.B., Roberts J.D., Beasley L., Chapman S., Pinto J.M., Smith L., Wiffin M., Russell M., Sparks S.A., Duckworth L., et al. International Society of Sports Nutrition Position Stand: Nutritional considerations for single-stage ultramarathon training and racing. J. Int. Soc. Sports Nutr. 2019;16:50. doi: 10.1186/s12970-019-0312-9.
    1. Jeukendrup A.E. Nutrition for endurance sports: Marathon, triathlon, and road cycling. J. Sports Sci. 2011;29:S91–S99. doi: 10.1080/02640414.2011.610348.
    1. Thomas D.T., Erdman K.A., Burke L.M. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med. Sci. Sports Exerc. 2016;48:543–568.
    1. Jeukendrup A.E. Training the Gut for Athletes. Sports Med. 2017;47:101–110. doi: 10.1007/s40279-017-0690-6.
    1. Burke L.M., Jeukendrup A.E., Jones A.M., Mooses M. Contemporary Nutrition Strategies to Optimize Performance in Distance Runners and Race Walkers. Int. J. Sport Nutr. Exerc. Metab. 2019;29:117–129. doi: 10.1123/ijsnem.2019-0004.
    1. Afshar N., Safaei S., Nickerson D.P., Hunter P.J., Suresh V. Computational Modeling of Glucose Uptake in the Enterocyte. Front. Physiol. 2019;10:380. doi: 10.3389/fphys.2019.00380.
    1. Scow J.S., Tavakkolizadeh A., Zheng Y., Sarr M.G. Acute “adaptation” by the small intestinal enterocyte: A posttranscriptional mechanism involving apical translocation of nutrient transporters. Surgery. 2011;149:601–605. doi: 10.1016/j.surg.2011.02.001.
    1. King A.J., O’Hara J.P., Arjomandkhah N.C., Rowe J., Morrison D.J., Preston T., King R.F.G.J. Liver and muscle glycogen oxidation and performance with dose variation of glucose-fructose ingestion during prolonged (3 h) exercise. Eur. J. Appl. Physiol. 2019;119:1157–1169. doi: 10.1007/s00421-019-04106-9.
    1. King A.J., O’Hara J.P., Morrison D.J., Preston T., King R.F.G.J. Carbohydrate dose influences liver and muscle glycogen oxidation and performance during prolonged exercise. Physiol. Rep. 2018;6:e13555. doi: 10.14814/phy2.13555.
    1. Pfeiffer B., Stellingwerff T., Hodgson A.B., Randell R., Pöttgen K., Res P., Jeukendrup A.E. Nutritional intake and gastrointestinal problems during competitive endurance events. Med. Sci. Sports Exerc. 2012;44:344–351. doi: 10.1249/MSS.0b013e31822dc809.
    1. Doyle J.A., Sherman W.M., Strauss R.L. Effects of eccentric and concentric exercise on muscle glycogen replenishment. J. Appl. Physiol. 1993;74:1848–1855. doi: 10.1152/jappl.1993.74.4.1848.
    1. Asp S., Daugaard J.R., Kristiansen S., Kiens B., Richter E.A. Eccentric exercise decreases maximal insulin action in humans: Muscle and systemic effects. Pt 3J. Physiol. 1996;494:891–898. doi: 10.1113/jphysiol.1996.sp021541.
    1. Costa R., Miall A., Khoo A., Rauch C., Snipe R., Costa V., Gibson P. Gut-training: The impact of two weeks repetitive gut-challenge during exercise on gastrointestinal status, glucose availability, fuel kinetics, and running performance. Appl. Physiol. Nutr. Metab. 2017;42:547–557. doi: 10.1139/apnm-2016-0453.
    1. Australian Institute of Sport ABCD Classification System. Australian Institute of Sport. [(accessed on 18 April 2020)];2017 Available online: .
    1. Trommelen J., Fuchs C.J., Beelen M., Lenaerts K., Jeukendrup A.E., Cermak N.M., Van Loon L.J.C. Fructose and sucrose intake increase exogenous carbohydrate oxidation during exercise. Nutrients. 2017;9:167. doi: 10.3390/nu9020167.
    1. Jeukendrup A. A step towards personalized sports nutrition: Carbohydrate intake during exercise. Sports Med. 2014;44:25–33. doi: 10.1007/s40279-014-0148-z.
    1. Karasov W.H. Integrative physiology of transcellular and paracellular intestinal absorption. J. Exp. Biol. 2017;220:2495–2501. doi: 10.1242/jeb.144048.
    1. Ferraris R.P., Choe J.-Y., Patel C.R. Intestinal Absorption of Fructose. Annu. Rev. Nutr. 2018;38:41–67. doi: 10.1146/annurev-nutr-082117-051707.
    1. Foster C., Daines E., Hector L., Snyder A.C., Welsh R. Athletic performance in relation to training load. Wis. Med. J. 1996;95:370–374.
    1. Mielgo-Ayuso J., Calleja-González J., Refoyo I., León-Guereño P., Cordova A., Del Coso J. Exercise-Induced Muscle Damage and Cardiac Stress during a Marathon Could be Associated with Dietary Intake during the Week before the Race. Nutrients. 2020;12:316. doi: 10.3390/nu12020316.
    1. Murray B., Rosenbloom C. Fundamentals of glycogen metabolism for coaches and athletes. Nutr. Rev. 2018;76:243–259. doi: 10.1093/nutrit/nuy001.
    1. Burke L.M., Van Loon L.J.C., Hawley J.A. Postexercise muscle glycogen resynthesis in humans. J. Appl. Physiol. 2017;122:1055–1067. doi: 10.1152/japplphysiol.00860.2016.
    1. Ferguson C.J. An Effect Size Primer: A Guide for Clinicians and Researchers. Prof. Psychol. Res. Pract. 2009;40:532–538.
    1. Balducci P., Clémençon M., Trama R., Blache Y., Hautier C. Performance Factors in a Mountain Ultramarathon. Int. J. Sports Med. 2017;38:819–826. doi: 10.1055/s-0043-112342.
    1. Saunders M.J., Kane M.D., Todd M.K. Effects of a carbohydrate-protein beverage on cycling endurance and muscle damage. Med. Sci. Sports Exerc. 2004;36:1233–1238. doi: 10.1249/01.MSS.0000132377.66177.9F.
    1. Cockburn E., Stevenson E., Hayes P.R., Robson-Ansley P., Howatson G. Effect of milk-based carbohydrate-protein supplement timing on the attenuation of exercise-induced muscle damage. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2010;35:270–277. doi: 10.1139/H10-017.
    1. Hall A.H., Leveritt M.D., Ahuja K.D.K., Shing C.M. Coingestion of carbohydrate and protein during training reduces training stress and enhances subsequent exercise performance. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2013;38:597–604. doi: 10.1139/apnm-2012-0281.
    1. Kerksick C.M., Arent S., Schoenfeld B.J., Stout J.R., Campbell B., Wilborn C.D., Taylor L., Kalman D., Smith-Ryan A.E., Kreider R.B., et al. International society of sports nutrition position stand: Nutrient timing. J. Int. Soc. Sports Nutr. 2017;14:33. doi: 10.1186/s12970-017-0189-4.
    1. Cheng A.J., Jude B., Lanner J.T. Intramuscular mechanisms of overtraining. Redox Biol. 2020:101480. doi: 10.1016/j.redox.2020.101480.
    1. Banfi G., Colombini A., Lombardi G., Lubkowska A. Metabolic markers in sports medicine. Adv. Clin. Chem. 2012;56:2.
    1. Koch A.J., Pereira R., Machado M. The creatine kinase response to resistance exercise. J. Musculoskelet. Neuronal Interact. 2014;14:68–77.
    1. Kuipers H. Exercise-induced muscle damage. Int. J. Sports Med. 1994;15:132–135. doi: 10.1055/s-2007-1021034.
    1. Byrne C., Eston R., Edwards R. Characteristics of isometric and dynamic strength loss following eccentric exercise-induced muscle damage. Scand. J. Med. Sci. Sports. 2001;11:134–140. doi: 10.1046/j.1524-4725.2001.110302.x.
    1. Pokora I., Kempa K., Chrapusta S.J., Langfort J. Effects of downhill and uphill exercises of equivalent submaximal intensities on selected blood cytokine levels and blood creatine kinase activity. Biol. Sport. 2014;31:173–178. doi: 10.5604/20831862.1111434.
    1. Miles M.P., Walker E.E., Conant S.B., Hogan S.P., Kidd J.R. Carbohydrate influences plasma interleukin-6 but not C-reactive protein or creatine kinase following a 32-km mountain trail race. Int. J. Sport Nutr. Exerc. Metab. 2006;16:36–46. doi: 10.1123/ijsnem.16.1.36.
    1. Hearris M.A., Hammond K.M., Fell J.M., Morton J.P. Regulation of Muscle Glycogen Metabolism during Exercise: Implications for Endurance Performance and Training Adaptations. Nutrients. 2018;10:298. doi: 10.3390/nu10030298.
    1. Philp A., Hargreaves M., Baar K. More than a store: Regulatory roles for glycogen in skeletal muscle adaptation to exercise. Am. J. Physiol. Endocrinol. Metab. 2012;302:E1343–E1351. doi: 10.1152/ajpendo.00004.2012.
    1. Jensen R., Nielsen J., Ørtenblad N. Inhibition of glycogenolysis prolongs action potential repriming period and impairs muscle function in rat skeletal muscle. J. Physiol. 2020;598:789–803. doi: 10.1113/JP278543.
    1. Widrick J.J., Costill D.L., McConell G.K., Anderson D.E., Pearson D.R., Zachwieja J.J. Time course of glycogen accumulation after eccentric exercise. J. Appl. Physiol. 1992;72:1999–2004. doi: 10.1152/jappl.1992.72.5.1999.
    1. Costill D.L., Pascoe D.D., Fink W.J., Robergs R.A., Barr S.I., Pearson D. Impaired muscle glycogen resynthesis after eccentric exercise. J. Appl. Physiol. 1990;69:46–50. doi: 10.1152/jappl.1990.69.1.46.
    1. Asp S., Daugaard J.R., Richter E.A. Eccentric exercise decreases glucose transporter GLUT4 protein in human skeletal muscle. J. Physiol. 1995;482 Pt 3:705–712. doi: 10.1113/jphysiol.1995.sp020553.
    1. Kirwan J.P., Hickner R.C., Yarasheski K.E., Kohrt W.M., Wiethop B.V., Holloszy J.O. Eccentric exercise induces transient insulin resistance in healthy individuals. J. Appl. Physiol. 1992;72:2197–2202. doi: 10.1152/jappl.1992.72.6.2197.
    1. Richter E.A., Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol. Rev. 2013;93:993–1017. doi: 10.1152/physrev.00038.2012.
    1. Klip A., McGraw T.E., James D.E. Thirty sweet years of GLUT4. J. Biol. Chem. 2019;294:11369–11381. doi: 10.1074/jbc.REV119.008351.
    1. Hennigar S.R., McClung J.P., Pasiakos S.M. Nutritional interventions and the IL-6 response to exercise. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2017;31:3719–3728. doi: 10.1096/fj.201700080R.
    1. Isaacs A.W., Macaluso F., Smith C., Myburgh K.H. C-Reactive Protein Is Elevated Only in High Creatine Kinase Responders to Muscle Damaging Exercise. Front. Physiol. 2019;10:86. doi: 10.3389/fphys.2019.00086.
    1. Close G.L., Hamilton D.L., Philp A., Burke L.M., Morton J.P. New strategies in sport nutrition to increase exercise performance. Free Radic. Biol. Med. 2016;98:144–158. doi: 10.1016/j.freeradbiomed.2016.01.016.

Source: PubMed

Подписаться