Current Knowledge on Beetroot Bioactive Compounds: Role of Nitrate and Betalains in Health and Disease

Iñaki Milton-Laskibar, J Alfredo Martínez, María P Portillo, Iñaki Milton-Laskibar, J Alfredo Martínez, María P Portillo

Abstract

An increase in the prevalence of noncommunicable chronic diseases has been occurring in recent decades. Among the deaths resulting from these conditions, cardiovascular diseases (CVD) stand out as the main contributors. In this regard, dietary patterns featuring a high content of vegetables and fruits, such as the Mediterranean and the DASH diets, are considered beneficial, and thus have been extensively studied. This has resulted in growing interest in vegetable-derived ingredients and food-supplements that may have potential therapeutic properties. Among these supplements, beetroot juice, which is obtained from the root vegetable Beta vulgaris, has gained much attention. Although a significant part of the interest in beetroot juice is due to its nitrate (NO3-) content, which has demonstrated bioactivity in the cardiovascular system, other ingredients with potential beneficial properties such as polyphenols, pigments and organic acids are also present. In this context, the aim of this review article is to analyze the current knowledge regarding the benefits related to the consumption of beetroot and derived food-supplements. Therefore, this article focuses on nitrate and betalains, which are considered to be the major bioactive compounds present in beetroot, and thus in the derived dietary supplements.

Keywords: beetroot; betalains; dietary supplement; nitrate.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Nitrate–nitrite–nitric oxide pathway. Adapted from Niayakiru et al., 2020 [11].
Figure 2
Figure 2
Conversion of nitrate and nitrite into nitrosamines. NO3−: nitrate, NO2−: nitrite, NO: nitric oxide, HNO2: nitrous acid, H2N2O: nitrosamines, HN2O2: nitrosamides, Vit C: vitamin C. Adapted from Berends et al., 2019 [40].
Figure 3
Figure 3
Classification of the two main groups of betalains present in beetroot. All the chemical structures included in this figure were obtained from Khan et al., 2015 [46].
Figure 4
Figure 4
Antioxidant effects induced by betanins through Nrf2. Betanins enhance the Nrf2-Keap1 complex dissociation (A) and enhance Nrf2 nuclear translocation (B). Additionally, betanins can also activate MAPK (C), which, in turn, phosphorylates and stabilizes Nrf2 (D), contributing to its nuclear translocation. As a result, nuclear Nrf2-ARE binding is increased, resulting in enhanced transcription of genes encoding antioxidant and phase II enzymes. ARE: antioxidant response element, Keap1: Kelch-like repressor protein ECH-associated protein 1, MAPK: mitogen-activated protein kinase and Nrf2: nuclear factor erythroid 2-related factor 2.
Figure 5
Figure 5
Anti-inflammatory effects of betanins through the modulation of Nrf2-Keap1 and NF-κB-IKB complex dissociation. IKB: KB inhibitor, IKK: ikB kinase, Keap1: Kelch-like repressor protein ECH-associated protein 1, NF-κB: nuclear factor κB and Nrf2: nuclear factor erythroid 2-related factor 2.

References

    1. Blüher M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019;15:288–298. doi: 10.1038/s41574-019-0176-8.
    1. Appel L.J., Moore T.J., Obarzanek E., Vollmer W.M., Svetkey L.P., Sacks F.M., Bray G.A., Vogt T.M., Cutler J.A., Windhauser M.M., et al. A clinical trial of the effects of dietary patterns on blood pressure. N. Engl. J. Med. 1997;336:1117–1124. doi: 10.1056/NEJM199704173361601.
    1. Rees K., Hartley L., Flowers N., Clarke A., Hooper L., Thorogood M., Stranges S.N. “Mediterranean” dietary pattern for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2013;8:CD009825. doi: 10.1002/14651858.CD009825.pub2.
    1. Gee L.C., Ahluwalia A. Dietary Nitrate Lowers Blood Pressure: Epidemiological, Pre-clinical Experimental and Clinical Trial Evidence. Curr. Hypertens. Rep. 2016;18:17. doi: 10.1007/s11906-015-0623-4.
    1. Papadaki A., Martínez-González M.A., Alonso-Gómez A., Rekondo J., Salas-Salvadó J., Corella D., Ros E., Fitó M., Estruch R., Lapetra J., et al. Mediterranean diet and risk of heart failure: Results from the PREDIMED randomized controlled trial. Eur. J. Heart Fail. 2017;19:1179–1185. doi: 10.1002/ejhf.750.
    1. Clifford T., Howatson G., West D.J., Stevenson E. The Potential Benefits of Red Beetroot Supplementation in Health and Disease. Nutrients. 2015;7:2801–2822. doi: 10.3390/nu7042801.
    1. Lundberg J.O., Carlström M., Weitzberg E. Metabolic Effects of Dietary Nitrate in Health and Disease. Cell Metab. 2018;28:9–22. doi: 10.1016/j.cmet.2018.06.007.
    1. Arciero P.J., Miller V.J., Ward E. Performance enhancing diets and the PRISE Protocol to optimize athletic performance. J. Nutr. Metab. 2015;2015:715859. doi: 10.1155/2015/715859.
    1. Zamani H., de Joode M.E.J.R., Hossein I.J., Henckens N.F.T., Guggeis M.A., Berends J.E., de Kok T.M.C.M., van Breda S.J.G. The benefits and risks of beetroot juice consumption: A systematic review. Crit. Rev. Food Sci. Nutr. 2021;61:788–804. doi: 10.1080/10408398.2020.1746629.
    1. Lidder S., Webb A.J. Vascular effects of dietary nitrate (as found in green leafy vegetables and beetroot) via the nitrate-nitrite-nitric oxide pathway. Br. J. Clin. Pharmacol. 2013;75:677–696. doi: 10.1111/j.1365-2125.2012.04420.x.
    1. Nyakayiru J., van Loon L.J.C., Verdijk L.B. Could intramuscular storage of dietary nitrate contribute to its ergogenic effect? A mini-review. Free Radic. Biol. Med. 2020;152:295–300. doi: 10.1016/j.freeradbiomed.2020.03.025.
    1. Hoon M.W., Johnson N.A., Chapman P.G., Burke L.M. The effect of nitrate supplementation on exercise performance in healthy individuals: A systematic review and meta-analysis. Int. J. Sport Nutr. Exerc. Metab. 2013;23:522–532. doi: 10.1123/ijsnem.23.5.522.
    1. Van der Avoort C.M.T., Van Loon L.J.C., Hopman M.T.E., Verdijk L.B. Increasing vegetable intake to obtain the health promoting and ergogenic effects of dietary nitrate. Eur. J. Clin. Nutr. 2018;72:1485–1489. doi: 10.1038/s41430-018-0140-z.
    1. Moreno B., Soto K., González D. Nitrate consumption and potential beneficial effect on cardiovascular health. Rev. Chil. Nutr. 2015;42:199–205.
    1. Weitzberg E., Lundberg J.O. Novel aspects of dietary nitrate and human health. Annu. Rev. Nutr. 2013;33:129–159. doi: 10.1146/annurev-nutr-071812-161159.
    1. Gangolli S.D., van den Brandt P.A., Feron V.J., Janzowsky C., Koeman J.H., Speijers G.J., Spiegelhalder B., Walker R., Wisnok J.S. Nitrate, nitrite and N-nitroso compounds. Eur. J. Pharmacol. 1994;292:1–38. doi: 10.1016/0926-6917(94)90022-1.
    1. Walker R. The metabolism of dietary nitrites and nitrates. Biochem. Soc. Trans. 1996;24:780–785. doi: 10.1042/bst0240780.
    1. Hezel M.P., Weitzberg E. The oral microbiome and nitric oxide homoeostasis. Oral Dis. 2015;21:7–16. doi: 10.1111/odi.12157.
    1. Ahmed K.A., Nichols A.L., Honavar J., Dransfield M.T., Matalon S., Patel R.K. Measuring nitrate reductase activity from human and rodent tongues. Nitric Oxide. 2017;66:62–70. doi: 10.1016/j.niox.2017.04.001.
    1. Lundberg J.O., Govoni M. Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic. Biol. Med. 2004;37:395–400. doi: 10.1016/j.freeradbiomed.2004.04.027.
    1. Piknova B., Park J.W., Swanson K.M., Dey S., Noguchi C.T., Schechter A.N. Skeletal muscle as an endogenous nitrate reservoir. Nitric Oxide. 2015;47:10–16. doi: 10.1016/j.niox.2015.02.145.
    1. Stamler J.S., Meissner G. Physiology of nitric oxide in skeletal muscle. Physiol. Rev. 2001;81:209–237. doi: 10.1152/physrev.2001.81.1.209.
    1. Wylie L.J., Park J.W., Vanhatalo A., Kadach S., Black M.I., Stoyanov Z., Schechter A.N., Jones A.M., Piknova B. Human skeletal muscle nitrate store: Influence of dietary nitrate supplementation and exercise. J. Physiol. 2019;597:5565–5576. doi: 10.1113/JP278076.
    1. Sobko T., Marcus C., Govoni M., Kamiya S. Dietary nitrate in Japanese traditional foods lowers diastolic blood pressure in healthy volunteers. Nitric Oxide. 2010;22:136–140. doi: 10.1016/j.niox.2009.10.007.
    1. Coles L.T., Clifton P.M. Effect of beetroot juice on lowering blood pressure in free-living, disease-free adults: A randomized, placebo-controlled trial. Nutr. J. 2012;11:106. doi: 10.1186/1475-2891-11-106.
    1. Hobbs D.A., Kaffa N., George T.W., Methven L., Lovegrove J.A. Blood pressure-lowering effects of beetroot juice and novel beetroot-enriched bread products in normotensive male subjects. Br. J. Nutr. 2012;108:2066–2074. doi: 10.1017/S0007114512000190.
    1. Webb A.J., Patel N., Loukogeorgakis S., Okorie M., Aboud Z., Misra S., Rashid R., Miall P., Deanfield J., Benjamin N., et al. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension. 2008;51:784–790. doi: 10.1161/HYPERTENSIONAHA.107.103523.
    1. Ocampo D.A.B., Paipilla A.F., Marín E., Vargas-Molina S., Petro J.L., Pérez-Idárraga A. Dietary Nitrate from Beetroot Juice for Hypertension: A Systematic Review. Biomolecules. 2018;8:134. doi: 10.3390/biom8040134.
    1. Kelly J., Fulford J., Vanhatalo A., Blackwell J.R., French O., Bailey S.J., Gilchrist M., Winyard P.G., Jones A.M. Effects of short-term dietary nitrate supplementation on blood pressure, O2 uptake kinetics, and muscle and cognitive function in older adults. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013;304:R73–R83. doi: 10.1152/ajpregu.00406.2012.
    1. Toledo E., Hu F.B., Estruch R., Buil-Cosiales P., Corella D., Salas-Salvadó J., Covas M.I., Arós F., Gómez-Gracia E., Fiol M., et al. Effect of the Mediterranean diet on blood pressure in the PREDIMED trial: Results from a randomized controlled trial. BMC Med. 2013;11:207. doi: 10.1186/1741-7015-11-207.
    1. Poels M.M.F., Ikram M.A., Vernooij M.W., Krestin G.P., Hofman A., Niessen W.J., van der Lugt A., Breteler M.B.M. Total cerebral blood flow in relation to cognitive function: The Rotterdam Scan Study. J. Cereb. Blood Flow Metab. 2008;28:1652–1655. doi: 10.1038/jcbfm.2008.62.
    1. Presley T.D., Morgan A.R., Bechtold E., Clodfelter W., Dove R.W., Jennings J.M., Kraft R.A., King S.B., Laurienti P.J., Rejeski W.J., et al. Acute effect of a high nitrate diet on brain perfusion in older adults. Nitric Oxide. 2011;24:34–42. doi: 10.1016/j.niox.2010.10.002.
    1. Bond V., Curry B.H., Adams R.G., Asadi M.S., Millis R.M., Haddad G.E. Effects of dietary nitrates on systemic and cerebrovascular hemodynamics. Cardiol. Res. Pract. 2013;2013:435629. doi: 10.1155/2013/435629.
    1. Wightman E.L., Haskell-Ramsay C.F., Thompson K.G., Blackwell J.R., Winyard P.G., Forster J., Jones A.M., Kennedy D.O. Dietary nitrate modulates cerebral blood flow parameters and cognitive performance in humans: A double-blind, placebo-controlled, crossover investigation. Physiol. Behav. 2015;149:149–158. doi: 10.1016/j.physbeh.2015.05.035.
    1. Joris P.J., Mensink R.P., Adam T.C., Liu T.T. Cerebral Blood Flow Measurements in Adults: A Review on the Effects of Dietary Factors and Exercise. Nutrients. 2018;10:530. doi: 10.3390/nu10050530.
    1. Domínguez R., Cuenca E., Maté-Muñoz J.L., García-Fernández P., Serra-Paya N., Lozano-Estevan M.D.C., Veiga-Herreros P., Garnacho-Castaño M.V. Effects of Beetroot Juice Supplementation on Cardiorespiratory Endurance in Athletes. A Systematic Review. Nutrients. 2017;9:43. doi: 10.3390/nu9010043.
    1. Cholewa J., Trexler E., Lima-Soares F., de Araújo Pessôa K., Sousa-Silva R., Moura Santos A., Zhi X., Nicastro H., Torres Cabido C.E., de Freitas M.C., et al. Effects of dietary sports supplements on metabolite accumulation, vasodilation and cellular swelling in relation to muscle hypertrophy: A focus on “secondary” physiological determinants. Nutrition. 2019;60:241–251. doi: 10.1016/j.nut.2018.10.011.
    1. Porcelli S., Pugliese L., Rejc E., Pavei G., Bonato M., Montorsi M., La Torre A., Rasica L., Marzorati M. Effects of a Short-Term High-Nitrate Diet on Exercise Performance. Nutrients. 2016;8:534. doi: 10.3390/nu8090534.
    1. Oliveira-Paula G.H., Pinheiro L.C., Tanus-Santos J.E. Mechanisms impairing blood pressure responses to nitrite and nitrate. Nitric Oxide. 2019;85:35–43. doi: 10.1016/j.niox.2019.01.015.
    1. Berends J.E., van den Berg L.M.M., Guggeis M.A., Henckens N.F.T., Hossein I.J., de Joode M.E.J.R., Zamani H., van Pelt K.A.A.J., Beelen N.A., Kuhnle G.G., et al. Consumption of Nitrate-Rich Beetroot Juice with or without Vitamin C Supplementation Increases the Excretion of Urinary Nitrate, Nitrite, and N-nitroso Compounds in Humans. Int. J. Mol. Sci. 2019;20:2277. doi: 10.3390/ijms20092277.
    1. Ashworth A., Bescos R. Dietary nitrate and blood pressure: Evolution of a new nutrient? Nutr. Res. Rev. 2017;30:208–219. doi: 10.1017/S0954422417000063.
    1. Lee C.H., Wettasinghe M., Bolling B.W., Ji L.L., Parkin K.L. Betalains, Phase II Enzyme-Inducing Components From Red Beetroot (Beta vulgaris L.) Extracts. Nutr. Cancer. 2005;53:91–103. doi: 10.1207/s15327914nc5301_11.
    1. Sawicki T., Baczek N., Wiczkowski W. Betalain profile, content and antioxidant capacity of red beetroot dependent on the genotype and root part. J. Funct. Foods. 2016;27:249–261. doi: 10.1016/j.jff.2016.09.004.
    1. Akbar Hussain E., Sadiq Z., Zia-Ul-Haq M. Bioavailability of Betalains. In: Akbar Hussain E., Sadiq Z., Zia-Ul-Haq M., editors. Betalains: Biomolecular Aspects. Volume 1. Springer International Publishing; Cham, Switzerland: 2018. pp. 166–173.
    1. Lee E.J., An D., Nguyen C.T.T., Patil B.S., Kim J., Yoo K.S. Betalain and Betaine Composition of Greenhouse- or Field-Produced Beetroot (Beta vulgaris L.) and Inhibition of HepG2 Cell Proliferation. J. Agric. Food Chem. 2014;62:1324–1331. doi: 10.1021/jf404648u.
    1. Khan M.I., Giridhar P. Plant betalains: Chemistry and biochemistry. Phytochemistry. 2015;117:267–295. doi: 10.1016/j.phytochem.2015.06.008.
    1. Tesoriere L., Allegra M., Butera D., Livrea M.A. Absorption, excretion, and distribution of dietary antioxidant betalains in LDLs: Potential health effects of betalains in humans. Am. J. Clin. Nutr. 2004;80:941–945. doi: 10.1093/ajcn/80.4.941.
    1. Tesoriere L., Gentile C., Angileri F., Attanzio A., Tutone M., Allegra M., Livrea M.A. Trans-epithelial transport of the betalain pigments indicaxanthin and betanin across Caco-2 cell monolayers and influence of food matrix. Eur. J. Nutr. 2013;52:1077–1087. doi: 10.1007/s00394-012-0414-5.
    1. Kanner J., Harel S., Granit R. Betalains—A New Class of Dietary Cationized Antioxidants. J. Agric. Food Chem. 2001;49:5178–5185. doi: 10.1021/jf010456f.
    1. Frank T., Stintzing F.Z., Carle R., Bitsch I., Quaas D., Strass G., Bitsch R., Netzel M. Urinary pharmacokinetics of betalains following consumption of red beet juice in healthy humans. Pharmacol. Res. 2005;52:290–297. doi: 10.1016/j.phrs.2005.04.005.
    1. Rahimi M., Mesbah-Namin S.A., Ostadrahimi A., Abedimanesh S., Separham A., Jafarabadi M.A. Effects of betalains on atherogenic risk factors in patients with atherosclerotic cardiovascular disease. Food Funct. 2019;10:8286–8297. doi: 10.1039/C9FO02020A.
    1. Xie R., Jia D., Gao C., Zhou J., Sui H., Wei X., Zhang T., Han Y., Shi J., Bai Y. Homocysteine induces procoagulant activity of red blood cells via phosphatidylserine exposure and microparticles generation. Amino Acids. 2014;46:1997–2004. doi: 10.1007/s00726-014-1755-6.
    1. Rahimi M., Abedimanesh S., Mesbah-Namin S.A., Ostadrahimi A. Betalains, the nature-inspired pigments, in health and diseases. Crit. Rev. Food Sci. Nutr. 2019;59:2949–2978. doi: 10.1080/10408398.2018.1479830.
    1. Reddy M.K., Alexander-Lindo R.L., Nair M.G. Relative inhibition of lipid peroxidation, cyclooxygenase enzymes, and human tumor cell proliferation by natural food colors. J. Agric. Food Chem. 2005;53:9268–9273. doi: 10.1021/jf051399j.
    1. Pietrzkowski Z., Thresher W.C. Solid betalain compositions and methods. WO 2010/014839 A1. U.S. Patent. 2010 Mar 25;
    1. Esatbeyoglu T., Wagner A.E., Motafakkerazad R., Nakajima Y., Matsugo S., Rimbach G. Free radical scavenging and antioxidant activity of betanin: Electron spin resonance spectroscopy studies and studies in cultured cells. Food Chem. Toxicol. 2014;73:119–126. doi: 10.1016/j.fct.2014.08.007.
    1. Szaefer H., Krajka-Kuźniak V., Ignatowicz E., Adamska T., Baer-Dubowska W. Evaluation of the Effect of Beetroot Juice on DMBA-induced Damage in Liver and Mammary Gland of Female Sprague–Dawley Rats. Phytother. Res. 2014;28:55–61. doi: 10.1002/ptr.4951.
    1. Han J., Zhang Z., Yang S., Wang J., Yang X., Tan D. Betanin attenuates paraquat-induced liver toxicity through a mitochondrial pathway. Food Chem. Toxicol. 2014;70:100–106. doi: 10.1016/j.fct.2014.04.038.
    1. Sutariya B., Saraf M. Betanin, isolated from fruits of Opuntia elatior Mill attenuates renal fibrosis in diabetic rats through regulating oxidative stress and TGF-β pathway. J. Ethnopharmacol. 2017;198:432–443.
    1. Ahmadian E., Khosroushahi A.Y., Eghbal M.A., Eftekhari A. Betanin reduces organophosphate induced cytotoxicity in primary hepatocyte via an anti-oxidative and mitochondrial dependent pathway. Pestic. Biochem. Physiol. 2018;144:71–78. doi: 10.1016/j.pestbp.2017.11.009.
    1. Motawi T.K., Ahmed S.A., El-Boghdady N.A., Metwally N.S., Nasr N.N. Impact of betanin against paracetamol and diclofenac induced hepato-renal damage in rats. Biomarkers. 2020;25:86–93.
    1. Krajka-Kuźniak V., Paluszczak J., Szaefer H., Baer-Dubowska W. Betanin, a beetroot component, induces nuclear factor erythroid-2-related factor 2-mediated expression of detoxifying/antioxidant enzymes in human liver cell lines. Br. J. Nutr. 2013;110:2138–2149. doi: 10.1017/S0007114513001645.
    1. Silva D.V.T.D., Baião D.D.S., Ferreira V.F., Paschoalin V.M.F. Betanin as a multipath oxidative stress and inflammation modulator: A beetroot pigment with protective effects on cardiovascular disease pathogenesis. Crit. Rev. Food Sci. Nutr. 2020:1–16. doi: 10.1080/10408398.2020.1822277.
    1. Gentile C., Tesoriere L., Allegra M., Livrea M.A., D’Alessio P. Antioxidant betalains from cactus pear (Opuntia ficus-indica) inhibit endothelial ICAM-1 expression. Ann. N. Y. Acad. Sci. 2004;1028:481–486. doi: 10.1196/annals.1322.057.
    1. Khan M.I. Plant Betalains: Safety, Antioxidant Activity, Clinical Efficacy, and Bioavailability. Compr. Rev. Food Sci. Food Saf. 2016;15:316–330. doi: 10.1111/1541-4337.12185.
    1. Vidal P.J., López-Nicolás J.M., Gandía-Herrero F., García-Carmona F. Inactivation of lipoxygenase and cyclooxygenase by natural betalains and semi-synthetic analogues. Food Chem. 2014;154:246–254. doi: 10.1016/j.foodchem.2014.01.014.
    1. Tan D., Wang Y., Bai B., Yang X., Han J. Betanin attenuates oxidative stress and inflammatory reaction in kidney of paraquat-treated rat. Food Chem. Toxicol. 2015;78:141–146. doi: 10.1016/j.fct.2015.01.018.
    1. El Gamal A.A., AlSaid M.S., Raish M., Al-Sohaibani M., Al-Massarani S.M., Ahmad A., Hefnawy M., Al-Yahya M., Basoudan O.A., Rafatullah S. Beetroot (Beta vulgaris L.) extract ameliorates gentamicin-induced nephrotoxicity associated oxidative stress, inflammation, and apoptosis in rodent model. Mediat. Inflamm. 2014;2014:983952. doi: 10.1155/2014/983952.
    1. Pietrzkowski Z., Nemzer B., Spórna A., Stalica P., Tresher W., Keller R., Jiminez R., Michalowski T., Wybraniec S. Influence of betalin-rich extracts on reduction of discomfort associated with osteoarthritis. NewMed. 2010;1:12–17.
    1. Mitchell S.C. Food idiosyncrasies: Beetroot and asparagus. Drug Metab. Dispos. 2001;29:539–543.

Source: PubMed

Подписаться