Targeting the Oncogenic FGF-FGFR Axis in Gastric Carcinogenesis

Jinglin Zhang, Patrick M K Tang, Yuhang Zhou, Alfred S L Cheng, Jun Yu, Wei Kang, Ka Fai To, Jinglin Zhang, Patrick M K Tang, Yuhang Zhou, Alfred S L Cheng, Jun Yu, Wei Kang, Ka Fai To

Abstract

Gastric cancer (GC) is one of the most wide-spread malignancies in the world. The oncogenic role of signaling of fibroblast growing factors (FGFs) and their receptors (FGFRs) in gastric tumorigenesis has been gradually elucidated by recent studies. The expression pattern and clinical correlations of FGF and FGFR family members have been comprehensively delineated. Among them, FGF18 and FGFR2 demonstrate the most prominent driving role in gastric tumorigenesis with gene amplification or somatic mutations and serve as prognostic biomarkers. FGF-FGFR promotes tumor progression by crosstalking with multiple oncogenic pathways and this provides a rational therapeutic strategy by co-targeting the crosstalks to achieve synergistic effects. In this review, we comprehensively summarize the pathogenic mechanisms of FGF-FGFR signaling in gastric adenocarcinoma together with the current targeted strategies in aberrant FGF-FGFR activated GC cases.

Keywords: FGF; FGFR; gastric cancer; monoclonal antibody; small molecule.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The FGF-FGFR cascade interplays with the downstream signaling network in GC progression. Firstly, FGFR is aberrantly activated in GC cells. FGFs can be released mainly in two ways, in a paracrine manner by gastric fibroblasts, and in an autocrine manner from cancer cells. Gene amplification of FGFs and FGFRs leads to overproduction of FGFs and FGFRs. FGFs are stabilized and bind to FGFR via HSPG. Alternative splicing of FGFR induces two isoforms that highly are expressed in GC. The isoforms show different affinity to FGFs and contribute to diverse cellular processes. The intracellular region of the FGFR has tyrosine kinase (TK) activity. FGF stimulation leads to dimerization, phosphorylation, and activation of FGFR. The inhibitory effect of SEF is attenuated in GC cells. Secondly, after FGFR activation, adaptor proteins are recruited and also activated by phosphorylation. FRS2 further recruits GRB2, GAB1, and SOS to form a complex. The complex activates RAS-MAPK and PI3K-Akt-mTOR signaling pathways and transduces FGF stimulation into transcriptional regulation to forward tumorigenesis. The inhibitory effects of SPRY and MKP3 are abrogated in GC cells. PLCγ hydrolyzes PIP2 to IP3, increases Ca2+ levels, triggers DAG-PKC signaling, and phosphorylates GSK3β. Then, GSK3β is decreased and β-catenin is released to the nuclei. β-catenin and other EMT transcription factors, SNAIL and TWIST, initiate expression of oncogenes that are required for GC progression. Besides, JAK-STAT3 is activated by FGFR and contributes to transcriptional regulation of GC progression. (Arrows represent the activation or release routes; dash dots indicate the weakening of inhibitory effects).

References

    1. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492.
    1. Correa P. Human gastric carcinogenesis: A multistep and multifactorial process—First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res. 1992;52:6735–6740.
    1. Uemura N., Okamoto S., Yamamoto S., Matsumura N., Yamaguchi S., Yamakido M., Taniyama K., Sasaki N., Schlemper R.J. Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med. 2001;345:784–789. doi: 10.1056/NEJMoa001999.
    1. Pharoah P.D., Guilford P., Caldas C. International Gastric Cancer Linkage C: Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology. 2001;121:1348–1353. doi: 10.1053/gast.2001.29611.
    1. Hansford S., Kaurah P., Li-Chang H., Woo M., Senz J., Pinheiro H., Schrader K.A., Schaeffer D.F., Shumansky K., Zogopoulos G., et al. Hereditary Diffuse Gastric Cancer Syndrome: CDH1 Mutations and Beyond. JAMA Oncol. 2015;1:23–32. doi: 10.1001/jamaoncol.2014.168.
    1. Yanai K., Nakamura M., Akiyoshi T., Nagai S., Wada J., Koga K., Noshiro H., Nagai E., Tsuneyoshi M., Tanaka M., et al. Crosstalk of hedgehog and Wnt pathways in gastric cancer. Cancer Lett. 2008;263:145–156. doi: 10.1016/j.canlet.2007.12.030.
    1. Corso S., Ghiso E., Cepero V., Sierra J.R., Migliore C., Bertotti A., Trusolino L., Comoglio P.M., Giordano S. Activation of HER family members in gastric carcinoma cells mediates resistance to MET inhibition. Mol. Cancer. 2010;9:121. doi: 10.1186/1476-4598-9-121.
    1. Fu Y.F., Gui R., Liu J. HER-2-induced PI3K signaling pathway was involved in the pathogenesis of gastric cancer. Cancer Gene Ther. 2015;22:145–153. doi: 10.1038/cgt.2014.80.
    1. Riquelme I., Saavedra K., Espinoza J.A., Weber H., García P., Nervi B., Garrido M., Corvalán A.H., Roa J.C., Bizama C. Molecular classification of gastric cancer: Towards a pathway-driven targeted therapy. Oncotarget. 2015;6:24750–24779. doi: 10.18632/oncotarget.4990.
    1. Cui Z.-L., Han F.-F., Peng X.-H., Chen X., Luan C.-Y., Han R.-C., Xu W.-G., Guo X.-J. Yes-Associated Protein 1 Promotes Adenocarcinoma Growth and Metastasis through Activation of the Receptor Tyrosine Kinase Axl. Int. J. Immunopathol. Pharmacol. 2012;25:989–1001. doi: 10.1177/039463201202500416.
    1. Kang W., Cheng A.S., Yu J., To K.F. Emerging role of Hippo pathway in gastric and other gastrointestinal cancers. World J. Gastroenterol. 2016;22:1279–1288. doi: 10.3748/wjg.v22.i3.1279.
    1. Zhou Y., Huang T., Zhang J., Wong C.C., Zhang B., Dong Y., Wu F., Tong J.H.M., Wu W.K.K., Cheng A.S.L., et al. TEAD1/4 exerts oncogenic role and is negatively regulated by miR-4269 in gastric tumorigenesis. Oncogene. 2017;36:6518–6530. doi: 10.1038/onc.2017.257.
    1. The Cancer Genome Atlas Research Network Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–209. doi: 10.1038/nature13480.
    1. Friesel R., Neilson K.M. Ligand-independent Activation of Fibroblast Growth Factor Receptors by Point Mutations in the Extracellular, Transmembrane, and Kinase Domains. J. Boil. Chem. 1996;271:25049–25057.
    1. Thisse B., Thisse C. Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev. Biol. 2005;287:390–402. doi: 10.1016/j.ydbio.2005.09.011.
    1. Dieci M.V., Arnedos M., Andre F., Soria J.C. Fibroblast Growth Factor Receptor Inhibitors as a Cancer Treatment: From a Biologic Rationale to Medical Perspectives. Cancer Discov. 2013;3:264–279. doi: 10.1158/-12-0362.
    1. Xie L., Su X., Zhang L., Yin X., Tang L., Zhang X., Xu Y., Gao Z., Liu K., Zhou M., et al. FGFR2 gene amplification in gastric cancer predicts sensitivity to the selective FGFR inhibitor AZD4547. Clin. Cancer Res. 2013;19:2572–2583. doi: 10.1158/1078-0432.CCR-12-3898.
    1. Su X., Zhan P., Gavine P.R., Morgan S., Womack C., Ni X., Shen D., Bang Y.-J., Im S.-A., Kim W.H., et al. FGFR2 amplification has prognostic significance in gastric cancer: Results from a large international multicentre study. Br. J. Cancer. 2014;110:967–975. doi: 10.1038/bjc.2013.802.
    1. Ahn S., Lee J., Hong M., Kim S.T., Park S.H., Choi M.G., Lee J.-H., Sohn T.S., Bae J.M., Kim S., et al. FGFR2 in gastric cancer: Protein overexpression predicts gene amplification and high H-index predicts poor survival. Mod. Pathol. 2016;29:1095–1103. doi: 10.1038/modpathol.2016.96.
    1. Katoh M., Nakagama H. FGF receptors: Cancer biology and therapeutics. Med. Res. Rev. 2014;34:280–300. doi: 10.1002/med.21288.
    1. Itoh N., Ornitz D.M. Fibroblast growth factors: From molecular evolution to roles in development, metabolism and disease. J. Biochem. 2011;149:121–130. doi: 10.1093/jb/mvq121.
    1. Ghedini G.C., Ronca R., Presta M., Giacomini A. Future applications of FGF/FGFR inhibitors in cancer. Expert Rev. Anticancer. Ther. 2018;18:861–872. doi: 10.1080/14737140.2018.1491795.
    1. Yu P., Wilhelm K., Dubrac A., Tung J.K., Alves T.C., Fang J.S., Xie Y., Zhu J., Chen Z., De Smet F., et al. FGF-dependent metabolic control of vascular development. Nature. 2017;545:224–228. doi: 10.1038/nature22322.
    1. Maddaluno L., Urwyler C., Werner S. Fibroblast growth factors: Key players in regeneration and tissue repair. Development. 2017;144:4047–4060. doi: 10.1242/dev.152587.
    1. Hsu P.I., Chow N.H., Lai K.H., Yang H.B., Chan S.H., Lin X.Z., Cheng J.S., Huang J.S., Ger L.P., Huang S.M., et al. Implications of serum basic fibroblast growth factor levels in chronic liver diseases and hepatocellular carcinoma. Anticancer. Res. 1997;17:2803–2809.
    1. Poon R.T.-P., Ng I.O.-L., Lau C., Yu W.-C., Fan S.-T., Wong J. Correlation of serum basic fibroblast growth factor levels with clinicopathologic features and postoperative recurrence in hepatocellular carcinoma. Am. J. Surg. 2001;182:298–304. doi: 10.1016/S0002-9610(01)00708-5.
    1. Jibiki N., Saito N., Kameoka S., Kobayashi M. Clinical Significance of Fibroblast Growth Factor (FGF) Expression in Colorectal Cancer. Int. Surg. 2014;99:493–499. doi: 10.9738/INTSURG-D-14-00044.1.
    1. Helsten T., Schwaederle M., Kurzrock R. Fibroblast growth factor receptor signaling in hereditary and neoplastic disease: Biologic and clinical implications. Cancer Metastasis Rev. 2015;34:479–496. doi: 10.1007/s10555-015-9579-8.
    1. Korc M., Friesel R. The Role of Fibroblast Growth Factors in Tumor Growth. Curr. Cancer Drug Targets. 2009;9:639–651. doi: 10.2174/156800909789057006.
    1. Lee P., Johnson D., Cousens L., Fried V., Williams L. Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor. Sci. 1989;245:57–60. doi: 10.1126/science.2544996.
    1. Johnson D.E., Williams L.T. Structural and functional diversity in the FGF receptor multigene family. Adv. Cancer Res. 1993;60:1–41.
    1. Haugsten E.M., Wiedlocha A., Olsnes S., Wesche J. Roles of Fibroblast Growth Factor Receptors in Carcinogenesis. Mol. Cancer Res. 2010;8:1439–1452. doi: 10.1158/1541-7786.MCR-10-0168.
    1. Holzmann K., Grunt T., Heinzle C., Sampl S., Steinhoff H., Reichmann N., Kleiter M., Hauck M., Marian B. Alternative Splicing of Fibroblast Growth Factor Receptor IgIII Loops in Cancer. J. Nucleic Acids. 2012;2012:950508. doi: 10.1155/2012/950508.
    1. Yeh B.K., Igarashi M., Eliseenkova A.V., Plotnikov A.N., Sher I., Ron D., Aaronson S.A., Mohammadi M. Structural basis by which alternative splicing confers specificity in fibroblast growth factor receptors. Proc. Natl. Acad. Sci. USA. 2003;100:2266–2271. doi: 10.1073/pnas.0436500100.
    1. Babina I.S., Turner N.C. Advances and challenges in targeting FGFR signalling in cancer. Nat. Rev. Cancer. 2017;17:318–332. doi: 10.1038/nrc.2017.8.
    1. Trueb B. Biology of FGFRL1, the fifth fibroblast growth factor receptor. Cell. Mol. Life Sci. 2011;68:951–964. doi: 10.1007/s00018-010-0576-3.
    1. Helsten T., Elkin S., Arthur E., Tomson B.N., Carter J., Kurzrock R. The FGFR Landscape in Cancer: Analysis of 4,853 Tumors by Next-Generation Sequencing. Clin. Cancer Res. 2016;22:259–267. doi: 10.1158/1078-0432.CCR-14-3212.
    1. Latko M., Czyrek A., Porebska N., Kucinska M., Otlewski J., Zakrzewska M., Opalinski L. Cross-Talk between Fibroblast Growth Factor Receptors and Other Cell Surface Proteins. Cells. 2019;8:455. doi: 10.3390/cells8050455.
    1. Mulloy B., Linhardt R.J. Order out of complexity – protein structures that interact with heparin. Curr. Opin. Struct. Boil. 2001;11:623–628. doi: 10.1016/S0959-440X(00)00257-8.
    1. Beenken A., Mohammadi M. The FGF family: Biology, pathophysiology and therapy. Nat. Rev. Drug Discov. 2009;8:235–253. doi: 10.1038/nrd2792.
    1. Venero Galanternik M., Kramer K.L., Piotrowski T. Heparan Sulfate Proteoglycans Regulate Fgf Signaling and Cell Polarity during Collective Cell Migration. Cell Rep. 2015;10:414–428. doi: 10.1016/j.celrep.2014.12.043.
    1. Goetz R., Mohammadi M. Exploring mechanisms of FGF signalling through the lens of structural biology. Nat. Rev. Mol. Cell Biol. 2013;14:166–180. doi: 10.1038/nrm3528.
    1. Xu H., Lee K.W., Goldfarb M. Novel Recognition Motif on Fibroblast Growth Factor Receptor Mediates Direct Association and Activation of SNT Adapter Proteins. J. Boil. Chem. 1998;273:17987–17990. doi: 10.1074/jbc.273.29.17987.
    1. Hoch R.V., Soriano P. Context-specific requirements for Fgfr1 signaling through Frs2 and Frs3 during mouse development. Development. 2006;133:663–673. doi: 10.1242/dev.02242.
    1. Gotoh N., Laks S., Nakashima M., Lax I., Schlessinger J. FRS2 family docking proteins with overlapping roles in activation of MAP kinase have distinct spatial-temporal patterns of expression of their transcripts. FEBS Lett. 2004;564:14–18. doi: 10.1016/S0014-5793(04)00287-X.
    1. Mohammadi M., Olsen S.K., Ibrahimi O.A. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev. 2005;16:107–137. doi: 10.1016/j.cytogfr.2005.01.008.
    1. Zhang Y., McKeehan K., Lin Y., Zhang J., Wang F. Fibroblast growth factor receptor 1 (FGFR1) tyrosine phosphorylation regulates binding of FGFR substrate 2alpha (FRS2alpha) but not FRS2 to the receptor. Mol. Endocrinol. 2008;22:167–175. doi: 10.1210/me.2007-0140.
    1. Fürthauer M., Lin W., Ang S.-L., Thisse B., Thisse C. Sef is a feedback-induced antagonist of Ras/MAPK-mediated FGF signalling. Nat. Cell Biol. 2002;4:170–174. doi: 10.1038/ncb750.
    1. Tsang M., Friesel R., Kudoh T., Dawid I.B. Identification of Sef, a novel modulator of FGF signalling. Nat. Cell Biol. 2002;4:165–169. doi: 10.1038/ncb749.
    1. Tsang M., Dawid I.B. Promotion and attenuation of FGF signaling through the Ras-MAPK pathway. Sci. Stke. 2004;2004:pe17. doi: 10.1126/stke.2282004pe17.
    1. Dey J.H., Bianchi F., Voshol J., Bonenfant D., Oakeley E.J., Hynes N.E. Targeting Fibroblast Growth Factor Receptors Blocks PI3K/AKT Signaling, Induces Apoptosis, and Impairs Mammary Tumor Outgrowth and Metastasis. Cancer Res. 2010;70:4151–4162. doi: 10.1158/0008-5472.CAN-09-4479.
    1. Eswarakumar V., Lax I., Schlessinger J., Eswarakumar J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005;16:139–149. doi: 10.1016/j.cytogfr.2005.01.001.
    1. Turner N., Grose R. Fibroblast growth factor signalling: From development to cancer. Nat. Rev. Cancer. 2010;10:116–129. doi: 10.1038/nrc2780.
    1. Kamata T. Keratinocyte growth factor regulates proliferation and differentiation of hematopoietic cells expressing the receptor gene K-sam. Exp. Hematol. 2002;30:297–305. doi: 10.1016/S0301-472X(01)00800-1.
    1. Cailliau K., Browaeys-Poly E., Vilain J.P. Fibroblast growth factors 1 and 2 differently activate MAP kinase in Xenopus oocytes expressing fibroblast growth factor receptors 1 and 4. Biochim. Biophys. Acta. 2001;1538:228–233. doi: 10.1016/S0167-4889(01)00074-X.
    1. Peters K.G., Marie J., Wilson E., Ives H.E., Escobedo J., Del Rosario M., Mirda D., Williams L.T. Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2+ flux but not mitogenesis. Nature. 1992;358:678–681. doi: 10.1038/358678a0.
    1. Dudka A.A., Sweet S.M., Heath J.K. Signal transducers and activators of transcription-3 binding to the fibroblast growth factor receptor is activated by receptor amplification. Cancer Res. 2010;70:3391–3401. doi: 10.1158/0008-5472.CAN-09-3033.
    1. Candi E., Rufini A., Terrinoni A., Giamboi-Miraglia A., Lena A.M., Mantovani R., Knight R., Melino G. DeltaNp63 regulates thymic development through enhanced expression of FgfR2 and Jag2. Proc. Natl. Acad. Sci. USA. 2007;104:11999–12004. doi: 10.1073/pnas.0703458104.
    1. Katoh M., Katoh M. Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades. Cancer Biol. Ther. 2006;5:1059–1064. doi: 10.4161/cbt.5.9.3151.
    1. Fogarty M.P., Emmenegger B.A., Grasfeder L.L., Oliver T.G., Wechsler-Reya R.J. Fibroblast growth factor blocks Sonic hedgehog signaling in neuronal precursors and tumor cells. Proc. Natl. Acad. Sci. USA. 2007;104:2973–2978. doi: 10.1073/pnas.0605770104.
    1. Dudley A.T., Godin R.E., Robertson E.J. Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme. Genes Dev. 1999;13:1601–1613. doi: 10.1101/gad.13.12.1601.
    1. Peters K.G., Werner S., Chen G., Williams L.T. Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Development. 1992;114:233–243.
    1. Orr-Urtreger A., Bedford M.T., Burakova T., Arman E., Zimmer Y., Yayon A., Givol D., Lonai P. Developmental Localization of the Splicing Alternatives of Fibroblast Growth Factor Receptor-2 (FGFR2) Dev. Boil. 1993;158:475–486. doi: 10.1006/dbio.1993.1205.
    1. Eswarakumar V.P., Monsonego-Ornan E., Pines M., Antonopoulou I., Morriss-Kay G.M., Lonai P. The IIIc alternative of Fgfr2 is a positive regulator of bone formation. Development. 2002;129:3783–3793.
    1. Zhang X., Ibrahimi O.A., Olsen S.K., Umemori H., Mohammadi M., Ornitz D.M. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J. Boil. Chem. 2006;281:15694–15700. doi: 10.1074/jbc.M601252200.
    1. Ornitz D.M., Xu J., Colvin J.S., McEwen D.G., MacArthur C.A., Coulier F., Gao G., Goldfarb M. Receptor specificity of the fibroblast growth factor family. J. Biol. Chem. 1996;271:15292–15297. doi: 10.1074/jbc.271.25.15292.
    1. Nyeng P., Norgaard G.A., Kobberup S., Jensen J. FGF10 signaling controls stomach morphogenesis. Dev. Boil. 2007;303:295–310. doi: 10.1016/j.ydbio.2006.11.017.
    1. Hattori Y., Odagiri H., Nakatani H., Miyagawa K., Naito K., Sakamoto H., Katoh O., Yoshida T., Sugimura T., Terada M. K-sam, an amplified gene in stomach cancer, is a member of the heparin-binding growth factor receptor genes. Proc. Natl. Acad. Sci. USA. 1990;87:5983–5987. doi: 10.1073/pnas.87.15.5983.
    1. Nakatani H., Sakamoto H., Yoshida T., Yokota J., Tahara E., Sugimura T., Terada M. Isolation of an Amplified DNA Sequence in Stomach Cancer. Jpn. J. Cancer Res. 1990;81:707–710. doi: 10.1111/j.1349-7006.1990.tb02631.x.
    1. Cristescu R., Lee J., Nebozhyn M., Kim K.-M., Ting J.C., Wong S.S., Liu J., Yue Y.G., Wang J., Yu K., et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat. Med. 2015;21:449–456. doi: 10.1038/nm.3850.
    1. Deng N., Goh L.K., Wang H., Das K., Tao J., Tan I.B., Zhang S., Lee M., Wu J., Lim K.H., et al. A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut. 2012;61:673–684. doi: 10.1136/gutjnl-2011-301839.
    1. Jung E.-J., Jung E.-J., Min S.Y., Kim M.A., Kim W.H. Fibroblast growth factor receptor 2 gene amplification status and its clinicopathologic significance in gastric carcinoma. Hum. Pathol. 2012;43:1559–1566. doi: 10.1016/j.humpath.2011.12.002.
    1. Matsumoto K., Arao T., Hamaguchi T., Shimada Y., Kato K., Oda I., Taniguchi H., Koizumi F., Yanagihara K., Sasaki H., et al. FGFR2 gene amplification and clinicopathological features in gastric cancer. Br. J. Cancer. 2012;106:727–732. doi: 10.1038/bjc.2011.603.
    1. Park Y.S., Na Y.-S., Ryu M.-H., Lee C.-W., Park H.J., Lee J.-K., Park S.R., Ryoo B.-Y., Kang Y.-K. FGFR2 Assessment in Gastric Cancer Using Quantitative Real-Time Polymerase Chain Reaction, Fluorescent In Situ Hybridization, and Immunohistochemistry. Am. J. Clin. Pathol. 2015;143:865–872. doi: 10.1309/AJCPNFLSMWWPP8DR.
    1. Das K., Gunasegaran B., Tan I.B., Deng N., Lim K.H., Tan P. Mutually exclusive FGFR2, HER2, and KRAS gene amplifications in gastric cancer revealed by multicolour FISH. Cancer Lett. 2014;353:167–175. doi: 10.1016/j.canlet.2014.07.021.
    1. Kuboki Y., Schatz C.A., Koechert K., Schubert S., Feng J., Wittemer-Rump S., Ziegelbauer K., Krahn T., Nagatsuma A.K., Ochiai A. In situ analysis of FGFR2 mRNA and comparison with FGFR2 gene copy number by dual-color in situ hybridization in a large cohort of gastric cancer patients. Gastric Cancer. 2018;21:401–412. doi: 10.1007/s10120-017-0758-x.
    1. Hosoda K., Yamashita K., Ushiku H., Ema A., Moriya H., Mieno H., Washio M., Watanabe M. Prognostic relevance of FGFR2 expression in stage II/III gastric cancer with curative resection and S-1 chemotherapy. Oncol. Lett. 2018;15:1853–1860.
    1. Van Cutsem E., Bang Y.J., Mansoor W., Petty R.D., Chao Y., Cunningham D., Ferry D.R., Smith N.R., Frewer P., Ratnayake J., et al. A randomized, open-label study of the efficacy and safety of AZD4547 monotherapy versus paclitaxel for the treatment of advanced gastric adenocarcinoma with FGFR2 polysomy or gene amplification. Ann. Oncol. 2017;28:1316–1324. doi: 10.1093/annonc/mdx107.
    1. Nakazawa K., Yashiro M., Hirakawa K. Keratinocyte growth factor produced by gastric fibroblasts specifically stimulates proliferation of cancer cells from scirrhous gastric carcinoma. Cancer Res. 2003;63:8848–8852.
    1. Huang T., Wang L., Liu D., Li P., Xiong H., Zhuang L., Sun L., Yuan X., Qiu H. FGF7/FGFR2 signal promotes invasion and migration in human gastric cancer through upregulation of thrombospondin-1. Int. J. Oncol. 2017;50:1501–1512. doi: 10.3892/ijo.2017.3927.
    1. Ren C., Chen H., Han C., Fu D., Wang F., Wang D., Ma L., Zhou L., Han D. The anti-apoptotic and prognostic value of fibroblast growth factor 9 in gastric cancer. Oncotarget. 2016;7:36655–36665. doi: 10.18632/oncotarget.9131.
    1. Ooi A., Oyama T., Nakamura R., Tajiri R., Ikeda H., Fushida S., Nakamura H., Dobashi Y. Semi-comprehensive analysis of gene amplification in gastric cancers using multiplex ligation-dependent probe amplification and fluorescence in situ hybridization. Mod. Pathol. 2015;28:861–871. doi: 10.1038/modpathol.2015.33.
    1. Cerami E., Gao J., Dogrusoz U., Gross B.E., Sumer S.O., Aksoy B.A., Jacobsen A., Byrne C.J., Heuer M.L., Larsson E., et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–404. doi: 10.1158/-12-0095.
    1. Sun Q., Lin P., Zhang J., Li X., Yang L., Huang J., Zhou Z., Liu P., Liu N. Expression of Fibroblast Growth Factor 10 Is Correlated with Poor Prognosis in Gastric Adenocarcinoma. Tohoku J. Exp. Med. 2015;236:311–318. doi: 10.1620/tjem.236.311.
    1. Zhang J., Zhou Y., Huang T., Wu F., Pan Y., Dong Y., Wang Y., Chan A.K.Y., Liu L., Kwan J.S.H., et al. FGF18, a prominent player in FGF signaling, promotes gastric tumorigenesis through autocrine manner and is negatively regulated by miR-590-5p. Oncogene. 2019;38:33–46. doi: 10.1038/s41388-018-0430-x.
    1. Chang J., Wang S., Zhang Z., Liu X., Wu Z., Geng R., Ge X., Dai C., Liu R., Zhang Q., et al. Multiple receptor tyrosine kinase activation attenuates therapeutic efficacy of the fibroblast growth factor receptor 2 inhibitor AZD4547 in FGFR2 amplified gastric cancer. Oncotarget. 2015;6:2009–2022. doi: 10.18632/oncotarget.2987.
    1. Liu Y.J., Shen D., Yin X., Gavine P., Zhang T., Su X., Zhan P., Xu Y., Lv J., Qian J., et al. HER2, MET and FGFR2 oncogenic driver alterations define distinct molecular segments for targeted therapies in gastric carcinoma. Br. J. Cancer. 2014;110:1169–1178. doi: 10.1038/bjc.2014.61.
    1. Lau W.M., Teng E., Huang K.K., Tan J.W., Das K., Zang Z., Chia T., The M., Kono K., Yong W.P., et al. Acquired Resistance to FGFR Inhibitor in Diffuse-Type Gastric Cancer through an AKT-Independent PKC-Mediated Phosphorylation of GSK3beta. Mol. Cancer Ther. 2018;17:232–242. doi: 10.1158/1535-7163.MCT-17-0367.
    1. Huang T., Liu D., Wang Y., Li P., Sun L., Xiong H., Dai Y., Zou M., Yuan X., Qiu H. FGFR2 Promotes Gastric Cancer Progression by Inhibiting the Expression of Thrombospondin4 via PI3K-Akt-Mtor Pathway. Cell. Physiol. Biochem. 2018;50:1332–1345. doi: 10.1159/000494590.
    1. Zhu D.-Y., Guo Q.-S., Li Y.-L., Cui B., Guo J., Liu J.-X., Li P. Twist1 correlates with poor differentiation and progression in gastric adenocarcinoma via elevation of FGFR2 expression. World J. Gastroenterol. 2014;20:18306–18315. doi: 10.3748/wjg.v20.i48.18306.
    1. Grygielewicz P., Dymek B., Bujak A., Gunerka P., Stanczak A., Lamparska-Przybysz M., Wieczorek M., Dzwonek K., Zdzalik D. Epithelial-mesenchymal transition confers resistance to selective FGFR inhibitors in SNU-16 gastric cancer cells. Gastric Cancer. 2016;19:53–62. doi: 10.1007/s10120-014-0444-1.
    1. Hallinan N., Finn S., Cuffe S., Rafee S., O’Byrne K., Gately K. Targeting the fibroblast growth factor receptor family in cancer. Cancer Treat. Rev. 2016;46:51–62. doi: 10.1016/j.ctrv.2016.03.015.
    1. Hui Q., Jin Z., Li X., Liu C., Wang X. FGF Family: From Drug Development to Clinical Application. Int. J. Mol. Sci. 2018;19:1875. doi: 10.3390/ijms19071875.
    1. Zhao W.-M., Wang L., Park H., Chhim S., Tanphanich M., Yashiro M., Kim K.J. Monoclonal Antibodies to Fibroblast Growth Factor Receptor 2 Effectively Inhibit Growth of Gastric Tumor Xenografts. Clin. Cancer Res. 2010;16:5750–5758. doi: 10.1158/1078-0432.CCR-10-0531.
    1. Sommer A., Kopitz C., Schatz C.A., Nising C.F., Mahlert C., Lerchen H.G., Stelte-Ludwig B., Hammer S., Greven S., Schuhmacher J., et al. Preclinical Efficacy of the Auristatin-Based Antibody-Drug Conjugate BAY 1187982 for the Treatment of FGFR2-Positive Solid Tumors. Cancer Res. 2016;76:6331–6339. doi: 10.1158/0008-5472.CAN-16-0180.
    1. Katoh M. Therapeutics Targeting FGF Signaling Network in Human Diseases. Trends Pharmacol. Sci. 2016;37:1081–1096. doi: 10.1016/j.tips.2016.10.003.
    1. Ronca R., Giacomini A., Di Salle E., Coltrini D., Pagano K., Ragona L., Matarazzo S., Rezzola S., Maiolo D., Torella R., et al. Long-Pentraxin 3 Derivative as a Small-Molecule FGF Trap for Cancer Therapy. Cancer Cell. 2015;28:225–239. doi: 10.1016/j.ccell.2015.07.002.
    1. Pierce K.L., Deshpande A.M., Stohr B.A., Gemo A.T., Patil N.S., Brennan T.J., Bellovin D.I., Palencia S., Giese T., Huang C., et al. FPA144, a humanized monoclonal antibody for both FGFR2-amplified and nonamplified, FGFR2b-overexpressing gastric cancer patients. J. Clin. Oncol. 2014;32:e15074. doi: 10.1200/jco.2014.32.15_suppl.e15074.
    1. Jiang X.F., Dai Y., Peng X., Shen Y.Y., Su Y., Wei M.M., Liu W.R., Ding Z.B., Zhang A., Shi Y.H., et al. SOMCL-085, a novel multi-targeted FGFR inhibitor, displays potent anticancer activity in FGFR-addicted human cancer models. Acta Pharmacol. Sin. 2018;39:243–250. doi: 10.1038/aps.2017.96.
    1. Hilberg F., Tontsch-Grunt U., Baum A., Le A.T., Doebele R.C., Lieb S., Gianni D., Voss T., Garin-Chesa P., Haslinger C., et al. Triple Angiokinase Inhibitor Nintedanib Directly Inhibits Tumor Cell Growth and Induces Tumor Shrinkage via Blocking Oncogenic Receptor Tyrosine Kinases. J. Pharmacol. Exp. Ther. 2018;364:494–503. doi: 10.1124/jpet.117.244129.
    1. Cha Y., Kim H.-P., Lim Y., Han S.-W., Song S.-H., Kim T.-Y. FGFR2 amplification is predictive of sensitivity to regorafenib in gastric and colorectal cancers in vitro. Mol. Oncol. 2018;12:993–1003. doi: 10.1002/1878-0261.12194.
    1. Burbridge M.F., Bossard C.J., Saunier C., Fejes I., Bruno A., Leonce S., Ferry G., Da Violante G., Bouzom F., Cattan V., et al. S49076 is a novel kinase inhibitor of MET, AXL, and FGFR with strong preclinical activity alone and in association with bevacizumab. Mol. Cancer Ther. 2013;12:1749–1762. doi: 10.1158/1535-7163.MCT-13-0075.
    1. Gozgit J.M., Wong M.J., Moran L., Wardwell S., Mohemmad Q.K., Narasimhan N.I., Shakespeare W.C., Wang F., Clackson T., Rivera V.M. Ponatinib (AP24534), a multitargeted pan-FGFR inhibitor with activity in multiple FGFR-amplified or mutated cancer models. Mol. Cancer Ther. 2012;11:690–699. doi: 10.1158/1535-7163.MCT-11-0450.
    1. Jang J., Kim H.K., Bang H., Kim S.T., Kim S.Y., Park S.H., Lim H.Y., Kang W.K., Lee J., Kim K.-M. Antitumor Effect of AZD4547 in a Fibroblast Growth Factor Receptor 2–Amplified Gastric Cancer Patient–Derived Cell Model1. Transl. Oncol. 2017;10:469–475. doi: 10.1016/j.tranon.2017.03.001.
    1. Michael M., Bang Y.J., Park Y.S., Kang Y.K., Kim T.M., Hamid O., Thornton D., Tate S.C., Raddad E., Tie J. A Phase 1 Study of LY2874455, an Oral Selective pan-FGFR Inhibitor, in Patients with Advanced Cancer. Target. Oncol. 2017;12:463–474. doi: 10.1007/s11523-017-0502-9.
    1. Kim S.Y., Ahn T., Bang H., Ham J.S., Kim J., Kim S.T., Jang J., Shim M., Kang S.Y., Park S.H., et al. Acquired resistance to LY2874455 in FGFR2-amplified gastric cancer through an emergence of novel FGFR2-ACSL5 fusion. Oncotarget. 2017;8:15014–15022. doi: 10.18632/oncotarget.14788.
    1. Brameld K.A., Owens T.D., Verner E., Venetsanakos E., Bradshaw J.M., Phan V.T., Tam D., Leung K., Shu J., LaStant J., et al. Discovery of the Irreversible Covalent FGFR Inhibitor 8-(3-(4-Acryloylpiperazin-1-yl) propyl)-6-(2,6-dichloro-3,5-dimethoxyphenyl)-2-(me thylamino) pyrido [2,3-d] pyrimidin-7 (8 H)-one (PRN1371) for the Treatment of Solid Tumors. J. Med. Chem. 2017;60:6516–6527. doi: 10.1021/acs.jmedchem.7b00360.
    1. Tsimafeyeu I., Daeyaert F., Joos J.B., Aken K.V., Ludes-Meyers J., Byakhov M., Tjulandin S. Molecular Modeling, de novo Design and Synthesis of a Novel, Extracellular Binding Fibroblast Growth Factor Receptor 2 Inhibitor Alofanib (RPT835) Med. Chem. 2016;12:303–317. doi: 10.2174/1573406412666160106154726.
    1. Hall T.G., Yu Y., Eathiraj S., Wang Y., Savage R.E., Lapierre J.M., Schwartz B., Abbadessa G. Preclinical Activity of ARQ 087, a Novel Inhibitor Targeting FGFR Dysregulation. PLoS ONE. 2016;11:e0162594. doi: 10.1371/journal.pone.0162594.
    1. Schmidt K., Moser C., Hellerbrand C., Zieker D., Wagner C., Redekopf J., Schlitt H.J., Geissler E.K., Lang S.A. Targeting Fibroblast Growth Factor Receptor (FGFR) with BGJ398 in a Gastric Cancer Model. Anticancer Res. 2015;35:6655–6665.
    1. Inokuchi M., Murase H., Otsuki S., Kawano T., Kojima K. Different clinical significance of FGFR1-4 expression between diffuse-type and intestinal-type gastric cancer. World J. Surg. Oncol. 2017;15:2. doi: 10.1186/s12957-016-1081-4.
    1. Pearson A., Smyth E., Babina I.S., Herrera-Abreu M.T., Tarazona N., Peckitt C., Kilgour E., Smith N.R., Geh C., Rooney C., et al. High-Level Clonal FGFR Amplification and Response to FGFR Inhibition in a Translational Clinical Trial. Cancer Discov. 2016;6:838–851. doi: 10.1158/-15-1246.
    1. Hierro C., Alsina M., Sanchez M., Serra V., Rodon J., Tabernero J. Targeting the fibroblast growth factor receptor 2 in gastric cancer: Promise or pitfall? Ann. Oncol. 2017;28:1207–1216. doi: 10.1093/annonc/mdx081.

Source: PubMed

Подписаться