Skeletal muscle hypertrophy and attenuation of cardio-metabolic risk factors (SHARC) using functional electrical stimulation-lower extremity cycling in persons with spinal cord injury: study protocol for a randomized clinical trial

Ashraf S Gorgey, Refka E Khalil, John C Davis, William Carter, Ranjodh Gill, Jeannie Rivers, Rehan Khan, Lance L Goetz, Teodoro Castillo, Timothy Lavis, Adam P Sima, Edward J Lesnefsky, Christopher C Cardozo, Robert A Adler, Ashraf S Gorgey, Refka E Khalil, John C Davis, William Carter, Ranjodh Gill, Jeannie Rivers, Rehan Khan, Lance L Goetz, Teodoro Castillo, Timothy Lavis, Adam P Sima, Edward J Lesnefsky, Christopher C Cardozo, Robert A Adler

Abstract

Background: Persons with spinal cord injury (SCI) are at heightened risks of developing unfavorable cardiometabolic consequences due to physical inactivity. Functional electrical stimulation (FES) and surface neuromuscular electrical stimulation (NMES)-resistance training (RT) have emerged as effective rehabilitation methods that can exercise muscles below the level of injury and attenuate cardio-metabolic risk factors. Our aims are to determine the impact of 12 weeks of NMES + 12 weeks of FES-lower extremity cycling (LEC) compared to 12 weeks of passive movement + 12 weeks of FES-LEC on: (1) oxygen uptake (VO2), insulin sensitivity, and glucose disposal in adults with SCI; (2) skeletal muscle size, intramuscular fat (IMF), and visceral adipose tissue (VAT); and (3) protein expression of energy metabolism, protein molecules involved in insulin signaling, muscle hypertrophy, and oxygen uptake and electron transport chain (ETC) activities.

Methods/design: Forty-eight persons aged 18-65 years with chronic (> 1 year) SCI/D (AIS A-C) at the C5-L2 levels, equally sub-grouped by cervical or sub-cervical injury levels and time since injury, will be randomized into either the NMES + FES group or Passive + FES (control group). The NMES + FES group will undergo 12 weeks of evoked RT using twice-weekly NMES and ankle weights followed by twice-weekly progressive FES-LEC for an additional 12 weeks. The control group will undergo 12 weeks of passive movement followed by 12 weeks of progressive FES-LEC. Measurements will be performed at baseline (B; week 0), post-intervention 1 (P1; week 13), and post-intervention 2 (P2; week 25), and will include: VO2 measurements, insulin sensitivity, and glucose effectiveness using intravenous glucose tolerance test; magnetic resonance imaging to measure muscle, IMF, and VAT areas; muscle biopsy to measure protein expression and intracellular signaling; and mitochondrial ETC function.

Discussion: Training through NMES + RT may evoke muscle hypertrophy and positively impact oxygen uptake, insulin sensitivity, and glucose effectiveness. This may result in beneficial outcomes on metabolic activity, body composition profile, mitochondrial ETC, and intracellular signaling related to insulin action and muscle hypertrophy. In the future, NMES-RT may be added to FES-LEC to improve the workloads achieved in the rehabilitation of persons with SCI and further decrease muscle wasting and cardio-metabolic risks.

Trial registration: ClinicalTrials.gov, NCT02660073 . Registered on 21 Jan 2016.

Keywords: Functional electrical stimulation; Neuromuscular electrical stimulation; Resistance training; Spinal cord injury.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Rationale of the study. Briefly summarizes the negative impacts of SCI on body composition and cardiometabolic prolife and how adding NMES-RT to FES-LEC training may help to alleviate these health-related consequences and serve as a rehabilitation approach for persons with SCI
Fig. 2
Fig. 2
The study timeline and procedure are highlighted. After screening and consent, participants will be randomized into one of two testing groups. Each participant will undergo baseline testing (B) before beginning NMES + FES or Control + FES. Each group will then be tested for metabolic, body, and muscle composition (P1) after a 12-week period. Each group will then complete 12 weeks of FES followed by another bout of testing (P2)

References

    1. Gorgey AS, Dolbow DR, Dolbow JD, Khalil RK, Castillo C, Gater DR. Effects of spinal cord injury on body composition and metabolic profile - part I. J Spinal Cord Med. 2014;37:693–702.
    1. Gorgey AS, Mather KJ, Poarch H, Gater DR. Influence of motor complete spinal cord injury on visceral and subcutaneous adipose tissue measured by multiaxial magnetic resonance imaging. J Spinal Cord Med. 2011;34(1):99–109.
    1. Gorgey AS, Gater DR. Regional and relative adiposity patterns in relation to carbohydrate and lipid metabolism in men with spinal cord injury. Appl Physiol Nutr Metab. 2011;36(1):107–114.
    1. National Spinal Cord Injury Statistical Center. . Accessed 27 Mar 2019.
    1. DeVivo MJ, Go BK, Jackson AB. Overview of the national spinal cord injury statistical center database. J Spinal Cord Med. 2002;25(4):335–338.
    1. Strauss DJ, Devivo MJ, Paculdo DR, Shavelle RM. Trends in life expectancy after spinal cord injury. Arch Phys Med Rehabil. 2006;87(8):1079–1085.
    1. DeVivo MJ. Causes and costs of spinal cord injury in the United States. Spinal Cord. 1997;35(12):809–813.
    1. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):1423–1434.
    1. Martin Ginis KA, van der Scheer JW, Latimer-Cheung AE, Barrow A, Bourne C, Carruthers P, et al. Evidence-based scientific exercise guidelines for adults with spinal cord injury: an update and a new guideline. Spinal Cord. 2018;56:308–321.
    1. Ginis KA, Hicks AL, Latimer AE, Warburton DE, Bourne C, Ditor DS, et al. The development of evidence-informed physical activity guidelines for adults with spinal cord injury. Spinal Cord. 2011;49:1088–1096.
    1. Kanzleiter T, Rath M, Görgens SW, Jensen J, Tangen DS, Kolnes AJ, et al. The myokine decorin is regulated by contraction and involved in muscle hypertrophy. Biochem Biophys Res Commun. 2014;450(2):1089–1094.
    1. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8:457–465.
    1. Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 2008;88:1379–1406.
    1. Aksnes AK, Hjeltnes N, Wahlström EO, Katz A, Zierath JR, Wallberg-Henriksson H. Intact glucose transport in morphologically altered denervated skeletal muscle from quadriplegic patients. Am J Phys. 1996;271:E593–E600.
    1. Arany Z. PGC-1 coactivators and skeletal muscle adaptations in health and disease. Curr Opin Genet Dev. 2008;18(5):426–434.
    1. Sacheck JM, Hyatt JP, Raffaello A, Jagoe RT, Roy RR, Edgerton VR, et al. Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. FASEB J. 2007;21(1):140–155.
    1. Gorgey AS, Dolbow DR, Dolbow JD, Khalil RK, Gater DR. The effects of electrical stimulation on body composition and metabolic profile after spinal cord injury - Part II. J Spinal Cord Med. 2015;38(1):23–37.
    1. Hettinga DM, Andrews BJ. Oxygen consumption during functional electrical stimulation assisted exercise in persons with spinal cord injury: implications for fitness and health. Sports Med. 2008;38:825–838.
    1. Gorgey AS, Poarch HJ, Dolbow DD, Castillo T, Gater DR. Effect of adjusting pulse durations of functional electrical stimulation cycling on energy expenditure and fatigue after spinal cord injury. J Rehabil Res Dev. 2014;51(9):1455–1468.
    1. Mahoney ET, Bickel CS, Elder C, Black C, Slade JM, Apple D, Jr, et al. Changes in skeletal muscle size and glucose tolerance with electrically stimulated resistance training in subjects with chronic spinal cord injury. Arch Phys Med Rehabil. 2005;86(7):1502–1504.
    1. Dudley GA, Castro MJ, Rogers S, Apple DF., Jr A simple means of increasing muscle size after spinal cord injury: a pilot study. Eur J Appl Physiol Occup Physiol. 1999;80(4):394–396.
    1. Sabatier MJ, Stoner L, Mahoney ET, Black C, Elder C, Dudley GA, et al. Electrically stimulated resistance training in SCI individuals increases muscle fatigue resistance but not femoral artery size or blood flow. Spinal Cord. 2006;44(4):227–233.
    1. Gorgey AS, Mather KJ, Cupp H, Gater DR. Effects of Resistance Training on adiposity and metabolism after Spinal Cord Injury. Med Sci Sports Exerc. 2012;44(1):165–174.
    1. Ryan TE, Brizendine JT, Backus D, McCully KK. Electrically induced resistance training in individuals with motor complete spinal cord injury. Arch Phys Med Rehabil. 2013;94:2166–2173.
    1. Gorgey AS, Khalil RE, Gill R, Gater DR, Lavis TD, Christopher PC, et al. Low-dose testosterone and evoked resistance exercise after spinal cord injury on cardio-metabolic risk factors: an open-label randomized clinical trial. J Neurotrauma. 2019. 10.1089/neu.2018.6136.
    1. Reginster JY, Burlet N. Osteoporosis: A Still Increasing Prevalence. Bone. 2006;38(2):4–9.
    1. Gorgey AS, Khalil RE, Lester RM, Dudley GA, Gater DR. Paradigms of lower extremity electrical stimulation training after spinal cord injury. J Vis Exp. 2018;(132). doi: 10.3791/57000.
    1. Gorgey AS, Shepherd C. Skeletal muscle hypertrophy and decreased intramuscular fat after unilateral resistance training in spinal cord injury: case report. J Spinal Cord Med. 2010;33(1):90–95.
    1. Gorgey AS, Mahoney E, Kendall T, Dudley GA. Effects of neuromuscular electrical stimulation parameters on specific tension. Eur J Appl Physiol. 2006;97(6):737–744.
    1. Gorgey AS, Black CD, Elder CP, Dudley GA. Effects of electrical stimulation parameters on fatigue in skeletal muscle. J Orthop Sports Phys Ther. 2009;39(9):684–692.
    1. Ryan TE, Erickson ML, Young HJ, McCully KK. Case report: endurance electrical stimulation training improves skeletal muscle oxidative capacity in chronic spinal cord injury. Arch Phys Med Rehabil. 2013;94(12):2559–2561.
    1. Dolbow David, Gorgey Ashraf, Ketchum Jessica, Gater David. Home-Based Functional Electrical Stimulation Cycling Enhances Quality of Life in Individuals with Spinal Cord Injury. Topics in Spinal Cord Injury Rehabilitation. 2013;19(4):324–329.
    1. Gorgey AS, Chiodo AE, Zemper ED, Hornyak JE, Rodriguez GM, Gater DR. Relationship of spasticity to soft tissue body composition and the metabolic profile in persons with chronic motor complete spinal cord injury. J Spinal Cord Med. 2010;33(1):6–15.
    1. Collins EG, Gater D, Kiratli J, Butler J, Hanson K, Langbein WE. Energy cost of physical activities in persons with spinal cord injury. Med Sci Sports Exerc. 2010;42(4):691–700.
    1. Vermeulen A, Verdonck L, Kaufman JMA. Critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab. 1999;84(10):3666–3672.
    1. Manns PJ, McCubbin JA, Williams DP. Fitness, inflammation, and the metabolic syndrome in men with paraplegia. Arch Phys Med Rehabil. 2005;86(6):1176–1181.
    1. Johnston TE, Modlesky CM, Betz RR, Lauer RT. Muscle changes following cycling and/or electrical stimulation in pediatric spinal cord injury. Arch Phys Med Rehabil. 2011;92(12):1937–1943.
    1. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–419.
    1. Gorgey AS, Harnish CR, Daniels JA, Dolbow DR, Keeley A, Moore J, et al. A report of anticipated benefits of functional electrical stimulation after spinal cord injury. J Spinal Cord Med. 2012;35(2):107–112.
    1. Clasey JL, Gater DR., Jr A comparison of hydrostatic weighing and air displacement plethysmography in adults with spinal cord injury. Arch Phys Med Rehabil. 2005;86:2106–2113.
    1. Buchholz AC, Bugaresti JM. A review of body mass index and waist circumference as markers of obesity and coronary heart disease risk in persons with chronic spinal cord injury. Spinal Cord. 2005;43(9):513–518.
    1. Lester RM, Ghatas MP, Khan RM, Gorgey AS. Prediction of thigh skeletal muscle mass using dual energy x-ray absorptiometry compared to magnetic resonance imaging after spinal cord injury. J Spinal Cord Med. 2019. 10.1080/10790268.2019.1570438.
    1. Castro MJ, Apple DF, Jr, Hillegass EA, Dudley GA. Influence of complete spinal cord injury on skeletal muscle cross-sectional area within the first 6 months of injury. Eur J Appl Physiol Occup Physiol. 1999;80(4):373–378.
    1. Gorgey AS, Dudley GA. Skeletal muscle atrophy and increased intramuscular fat after incomplete spinal cord injury. Spinal Cord. 2007;45(4):304–309.
    1. Elder CP, Apple DF, Bickel CS, Meyer RA, Dudley GA. Intramuscular fat and glucose tolerance after spinal cord injury--a cross-sectional study. Spinal Cord. 2004;42(12):711–716.
    1. Gorgey AS, Cho GM, Dolbow DR, Gater DR. Differences in current amplitude evoking leg extension in individuals with spinal cord injury. NeuroRehabilitation. 2013;33(1):161–170.
    1. Gorgey AS, Mather KJ, Gater DR. Central adiposity associations to carbohydrate and lipid metabolism in individuals with complete motor spinal cord injury. Metabolism. 2011;60(6):843–851.
    1. Bickel CS, Cross JM, Bamman MM. Exercise dosing to retain resistance training adaptations in young and older adults. Med Sci Sports Exerc. 2011;43(7):1177–1187.
    1. Blake GJ, Ridker PM. Novel clinical markers of vascular wall inflammation. Circ Res. 2001;89(9):763–771.
    1. Gorgey AS, Graham ZA, Bauman WA, Cardozo C, Gater DR. Abundance in proteins expressed after functional electrical stimulation cycling or arm cycling ergometry training in persons with chronic spinal cord injury. J Spinal Cord Med. 2017;40(4):439–448.
    1. Ritov Vladimir B., Menshikova Elizabeth V., Azuma Koichiro, Wood Richard, Toledo Frederico G. S., Goodpaster Bret H., Ruderman Neil B., Kelley David E. Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity. American Journal of Physiology-Endocrinology and Metabolism. 2010;298(1):E49–E58.
    1. Brass EP, Hiatt WR, Gardner AW, Hoppel CL. Decreased NADH dehydrogenase and ubiquinol-cytochrome c oxidoreductase in peripheral arterial disease. Am J Physiol Heart Circ Physiol. 2001;280(2):H603–H609.
    1. Talmadge RJ, Castro MJ, Apple DF, Jr, Dudley GA. Phenotypic adaptations in human muscle fibers 6 and 24 wk after spinal cord injury. J Appl Physiol. 2002;92(1):147–154.
    1. Castro MJ, Apple DF, Jr, Staron RS, Campos GE, Dudley GA. Influence of complete spinal cord injury on skeletal muscle within 6 mo of injury. J Appl Physiol. 1999;86(1):350–358.
    1. Kjaer M, Dela F, Sørensen FB, Secher NH, Bangsbo J, Mohr T, et al. Fatty acid kinetics and carbohydrate metabolism during electrical exercise in spinal cord-injured humans. Am J Physiol Regul Integr Comp Physiol. 2001;281(5):R1492–R1498.
    1. Mojtahedi MC, Valentine RJ, Arngrimsson SA, Wilund KR, Evans EM. The association between regional body composition and metabolic outcomes in athletes with spinal cord injury. Spinal Cord. 2008;46:192–197.
    1. Edwards LA, Bugaresti JM, Buchholz AC. Visceral adipose tissue and the ratio of visceral to subcutaneous adipose tissue are greater in adults with than in those without spinal cord injury, despite matching waist circumferences. Am J Clin Nutr. 2008;87(3):600–607.
    1. Maruyama Y, Mizuguchi M, Yaginuma T, Kusaka M, Yoshida H, Yokoyama K, et al. Serum leptin, abdominal obesity and the metabolic syndrome in individuals with chronic spinal cord injury. Spinal Cord. 2008;46:494–499.
    1. Rankin KC, O'Brien LC, Segal L, Khan MR, Gorgey AS. Liver adiposity and metabolic profile in individuals with chronic spinal cord injury. Biomed Res Int. 2017;2017:1364818.
    1. Gorgey AS, Farkas GJ, Dolbow DR, Khalil RE, Gater DR. Gender dimorphism in central adiposity may explain metabolic dysfunction after spinal cord injury. PM R. 2017;10(4):338–348.
    1. Wade RC, Gorgey AS. Anthropometric prediction of skeletal muscle cross-sectional area in persons with spinal cord injury. J Appl Physiol. 2017;122(5):1255–1261.
    1. Sumrell RM, Nightingale TE, McCauley LS, Gorgey AS. Anthropometric cutoffs and associations with visceral adiposity and metabolic biomarkers after spinal cord injury. PLoS One. 2018;13(8):e0203049.
    1. Fisher JA, McNelis MA, Gorgey AS, Dolbow DR, Goetz LL. Does upper extremity training influence body composition after spinal cord injury? Aging Dis. 2015;6(4):271–281.
    1. Griffin L, Decker MJ, Hwang JY, Wang B, Kitchen K, Ding Z, et al. Functional electrical stimulation cycling improves body composition, metabolic and neural factors in persons with spinal cord injury. J Electromyogr Kinesiol. 2009;19(4):614–622.
    1. Dolbow DR, Gorgey AS, Ketchum JM, Moore JR, Hackett LA, Gater DR. Exercise adherence during home-based functional electrical stimulation cycling by individuals with spinal cord injury. Am J Phys Med Rehabil. 2012;91(11):922–930.
    1. Hasnan N, Ektas N, Tanhoffer AI, Tanhoffer R, Fornusek C, Middleton JW, et al. Exercise responses during functional electrical stimulation cycling in individuals with spinal cord injury. Med Sci Sports Exerc. 2013;45:1131–1138.
    1. Hunt KJ, Hosmann D, Grob M, Saengsuwan J. Metabolic efficiency of volitional and electrically stimulated cycling in able-bodied subjects. Med Eng Phys. 2013;35(7):919–925.
    1. Duffell LD, de N Donaldson N, Newham DJ. Why is the metabolic efficiency of FES cycling low? IEEE Trans Neural Syst Rehabil Eng. 2009;17(3):263–269.
    1. Dolbow DR, Gorgey AS, Khalil RK, Gater DR. Effects of a fifty-six-month electrical stimulation cycling program after tetraplegia: case report. J Spinal Cord Med. 2017;40(4):485–488.
    1. Gorgey AS, Caudill C, Khalil RE. Effects of once weekly NMES training on knee extensors fatigue and body composition in a person with spinal cord injury. J Spinal Cord Med. 2016;39(1):99–102.
    1. Bickel CS, Slade JM, Haddad F, Adams GR, Dudley GA. Acute molecular responses of skeletal muscle to resistance exercise in able-bodied and spinal cord-injured subjects. J Appl Physiol. 1985;94(6):2255–2262.
    1. Yarar-Fisher C, Bickel CS, Windham ST, McLain AB, Bamman MM. Skeletal muscle signaling associated with impaired glucose tolerance in spinal cord-injured men and the effects of contractile activity. J Appl Physiol (1985) 2013;115(5):756–764.
    1. Kjaer M, Mohr T, Biering-Sørensen F, Bangsbo J. Muscle enzyme adaptation to training and tapering-off in spinal-cord-injured humans. Eur J Appl Physiol. 2001;84(5):482–486.
    1. Holman ME, Gorgey AS. Testosterone and resistance training improve muscle quality in spinal cord injury. Med Sci Sports Exerc. 2019;51:1591–1598.
    1. Skold C, Lonn L, Harms-Ringdahl K, Hultling C, Levi R, Nash M, et al. Effects of functional electrical stimulation training for six months on body composition and spasticity in motor complete tetraplegic spinal-injured individuals. J Rehabil Med. 2002;34:25–32.
    1. Yarar-Fisher C, Polston KFL, Eraslan M, Henley KY, Kinikli GI, Bickel CS, et al. Paralytic and nonparalytic muscle adaptations to exercise training versus high-protein diet in individuals with long-standing spinal cord injury. J Appl Physiol (1985) 2018;125(1):64–72.
    1. Testosterone and Long Pulse Stimulation After SCI. (2017, Nov 17). Retrieved Mar 25, 2019, from : .
    1. Gorgey AS, Lester RM, Wade RC, Khalil RE, Khan RK, Anderson ML, et al. A feasibility pilot using telehealth videoconference monitoring of home-based NMES resistance training in persons with spinal cord injury. Spinal Cord Ser Cases. 2017;3:17039.
    1. Gorgey AS. Exercise awareness and barriers after spinal cord injury. World J Orthop. 2014;5(3):158–162.

Source: PubMed

Подписаться