The Impact of SARS-Cov-2 Virus Infection on the Endocrine System

Noel Pratheepan Somasundaram, Ishara Ranathunga, Vithiya Ratnasamy, Piyumi Sachindra Alwis Wijewickrama, Harsha Anuruddhika Dissanayake, Nilukshana Yogendranathan, Kavinga Kalhari Kobawaka Gamage, Nipun Lakshitha de Silva, Manilka Sumanatilleke, Prasad Katulanda, Ashley Barry Grossman, Noel Pratheepan Somasundaram, Ishara Ranathunga, Vithiya Ratnasamy, Piyumi Sachindra Alwis Wijewickrama, Harsha Anuruddhika Dissanayake, Nilukshana Yogendranathan, Kavinga Kalhari Kobawaka Gamage, Nipun Lakshitha de Silva, Manilka Sumanatilleke, Prasad Katulanda, Ashley Barry Grossman

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has spread across the globe rapidly causing an unprecedented pandemic. Because of the novelty of the disease, the possible impact on the endocrine system is not clear. To compile a mini-review describing possible endocrine consequences of SARS-CoV-2 infection, we performed a literature survey using the key words Covid-19, Coronavirus, SARS CoV-1, SARS Cov-2, Endocrine, and related terms in medical databases including PubMed, Google Scholar, and MedARXiv from the year 2000. Additional references were identified through manual screening of bibliographies and via citations in the selected articles. The literature review is current until April 28, 2020. In light of the literature, we discuss SARS-CoV-2 and explore the endocrine consequences based on the experience with structurally-similar SARS-CoV-1. Studies from the SARS -CoV-1 epidemic have reported variable changes in the endocrine organs. SARS-CoV-2 attaches to the ACE2 system in the pancreas causing perturbation of insulin production resulting in hyperglycemic emergencies. In patients with preexisting endocrine disorders who develop COVID-19, several factors warrant management decisions. Hydrocortisone dose adjustments are required in patients with adrenal insufficiency. Identification and management of critical illness-related corticosteroid insufficiency is crucial. Patients with Cushing syndrome may have poorer outcomes because of the associated immunodeficiency and coagulopathy. Vitamin D deficiency appears to be associated with increased susceptibility or severity to SARS-CoV-2 infection, and replacement may improve outcomes. Robust strategies required for the optimal management of endocrinopathies in COVID-19 are discussed extensively in this mini-review.

Keywords: COVID-19; Endocrine; SARS-CoV2.

© Endocrine Society 2020.

Figures

Figure 1.
Figure 1.
Viral entry and cellular pathogenesis. The SARS-CoV-2 virus enters the respiratory tract via the epithelial cells in the nasal cavity (1). The virus binds via its membrane spike protein S, to the cell membrane protein ACE2 in lungs (2). TMPRSS2, another cell membrane protein, triggers cleavage of the S protein into 2 subunits (3). The S1 subunit promotes fusion of the viral envelope with the host cell membrane culminating endocytosis of the virus (4). The virus then releases its genomic RNA into the host cell (5). The viral RNA is translated into polyproteins pp1a and 1ab, both of which in turn undergo proteolysis by vital proteinases into small particles. In parallel, more genomic RNA are produced via the enzyme replicase (6). The genomic RNA gets transcribed into mRNA (7) and results in viral protein synthesis via translation (8). The replicated genomic RNA and the synthesized viral proteins are incorporated into virions in the RER and Golgi apparatus (9). The virions are ultimately released from the host cell as vesicles via exocytosis (10). pp1a and 1ab, viral replicase polyproteins; RER, rough endoplasmic reticulum; S, Spike protein; TMPRSS2, transmembrane protease serine 2.
Figure 2.
Figure 2.
Postulated mechanisms of vitamin D in prevention of COVID-19 infection. Vitamin D treatment inhibits the T-helper-1 cell (Th1) response, which reduces serum levels of pro-inflammatory cytokines and induces the production of anti-inflammatory Th2 cytokines. Vitamin D treatment downregulates the expression of DPP4/CD26, which may play a role in the virulence of the SARS-CoV-2. SARS-CoV-2 uses angiotensin-converting enzyme-2 (ACE2) for cellular entry. However, upregulation of ACE 2, protects against lipopolysaccharide induced acute lung injury. Vitamin D is found to be a negative endocrine regulator of RAAS. Vitamin D inhibited renin, ACE, and Ang II expression, and induced ACE2 levels. ACE2, converts angiotensin II to angiotensin 1-7. Upon binding AT1R, angiotensin II causes inflammation, fibrosis, and apoptosis. AT-(1-7) opposes the effects of angiotensin II by interacting with its own receptor. Red arrows indicates inhibitory action and green arrows, stimulatory action. ACE1, angiotensin-converting enzyme 1; ACE2, angiotensin-converting enzyme 2; AT1R, type 1 angiotensin 2 receptor; AT1-7, heptapeptide angiotensin (1-7); DPP4/CD26, dipeptidyl peptidase 4/cluster of differentiation 26; Th1, T helper 1 cells; Th2, T helper 2 cells.

References

    1. Mulatero P, Stowasser M, Loh KC, et al. . Increased diagnosis of primary aldosteronism, including surgically correctable forms, in centers from five continents. J Clin Endocrinol Metab. 2004;89(3):1045-1050.
    1. Corman VM, Muth D, Niemeyer D, Drosten C. Hosts and sources of dndemic human coronaviruses. Adv Virus Res. 2018;100:163-188.
    1. Worldometer. Coronavirus cases. . doi:10.1101/2020.01.23.20018549V2
    1. Chen N, Zhou M, Dong X, et al. . Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-513. doi:10.1016/S0140-6736(20)30211-7
    1. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS. J Virol. 2020. doi:10.1128/jvi.00127-20
    1. Lu R, Zhao X, Li J, et al. . Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020. doi:10.1016/S0140-6736(20)30251-8
    1. Li W, Moore MJ, Vasilieva N, et al. . Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450-454.
    1. Kuba K, Imai Y, Rao S, et al. . A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875-879.
    1. Zhou P, Yang X-L, Wang X-G, et al. . A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-273. doi:10.1038/s41586-020-2012-7.
    1. Letko M, Munster V. Functional assessment of cell entry and receptor usage for lineage B β-coronaviruses, including 2019-nCoV. bioRxiv. 2020. doi:10.1101/2020.01.22.915660.
    1. Jin Y, Yang H, Ji W, et al. . Virology, epidemiology, pathogenesis, and control of covid-19. Viruses. 2020. doi:10.3390/v12040372.
    1. Mason RJ. Pathogenesis of COVID-19 from a cell biologic perspective. Eur Respir J. April 2020:2000607. doi:10.1183/13993003.00607-2020.
    1. Donoghue M, Hsieh F, Baronas E, et al. . A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000;87(5):E1-E9.
    1. Ferrario CM, Jessup J, Chappell MC, et al. . Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005;111(20):2605-2610.
    1. Furuhashi M, Moniwa N, Mita T, et al. . Urinary angiotensin-converting enzyme 2 in hypertensive patients may be increased by olmesartan, an angiotensin II receptor blocker. Am J Hypertens. 2015;28(1):15-21.
    1. Kuba K, Imai Y, Penninger JM. Angiotensin-converting enzyme 2 in lung diseases. Curr Opin Pharmacol. 2006;6(3):271-276.
    1. Iwai M, Horiuchi M. Devil and angel in the renin-angiotensin system: ACE-angiotensin II-AT1 receptor axis vs. ACE2-angiotensin-(1-7)-Mas receptor axis. Hypertens Res. 2009;32(7):533-536.
    1. Kuster GM, Pfister O, Burkard T, et al. . SARS-CoV2: should inhibitors of the renin–angiotensin system be withdrawn in patients with COVID-19? Eur Heart J. March 2020. doi:10.1093/eurheartj/ehaa235
    1. de Wilde AH, Snijder EJ, Kikkert M, van Hemert MJ. Host factors in coronavirus replication. Curr Top Microbiol Immunol. 2018;419:1-42.
    1. Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A. 2009;106(14):5871-5876.
    1. Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020;10(2):102-108.
    1. Guo YR, Cao QD, Hong ZS, et al. . The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res. 2020. doi:10.1186/s40779-020-00240-0
    1. Wang H, Yang P, Liu K, et al. . SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res. 2008. doi:10.1038/cr.2008.15.
    1. Kuba K, Imai Y, Ohto-Nakanishi T, Penninger JM. Trilogy of ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol Ther. 2010;128(1):119-128.
    1. Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol. 2009;7(6):439-450.
    1. de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14(8):523-534.
    1. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020;24:91-98.
    1. Wrapp D, Wang N, Corbett KS, et al. . Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (80-). 2020. doi:10.1126/science.aax0902
    1. Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol. 2007;170(4):1136-1147.
    1. Keicho N, Itoyama S, Kashiwase K, et al. . Association of human leukocyte antigen class II alleles with severe acute respiratory syndrome in the Vietnamese population. Hum Immunol. 2009;70(7):527-531.
    1. Chen YM, Liang SY, Shih YP, et al. . Epidemiological and genetic correlates of severe acute respiratory syndrome coronavirus infection in the hospital with the highest nosocomial infection rate in Taiwan in 2003. J Clin Microbiol 2006;44(2):359-365.
    1. Wang SF, Chen KH, Chen M, et al. . Human-leukocyte antigen class I Cw 1502 and class II DR 0301 genotypes are associated with resistance to severe acute respiratory syndrome (SARS) infection. Viral Immunol. 2011;24(5):421-426.
    1. Xu Z, Shi L, Wang Y, et al. . Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-422.
    1. Lin L, Lu L, Cao W, Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect. 2020;9(1):727-732.
    1. Hirano T, Murakami M. COVID-19: a new virus, but a familiar receptor and cytokine release syndrome. Immunity. 2020:3-5. doi:10.1016/j.immuni.2020.04.003.
    1. Huang C, Wang Y, Li X, et al. . Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. [published correction appears in Lancet January 30, 2020]. Lancet. 2020;395(10223):497-506.
    1. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;109:102433.
    1. Steardo L, Steardo L Jr, Zorec R, Verkhratsky A. Neuroinfection may contribute to pathophysiology and clinical manifestations of COVID-19. Acta Physiol 2020;229(3):e13473.
    1. Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82(15):7264-7275.
    1. Wu Y, Xu X, Chen Z, et al. . Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun 2020;87:18-22.
    1. Leow MK, Kwek DS, Ng AW, Ong KC, Kaw GJ, Lee LS. Hypocortisolism in survivors of severe acute respiratory syndrome (SARS). Clin Endocrinol (Oxf). 2005;63(2):197-202.
    1. Vladutiu GD, Natelson BH. Association of medically unexplained fatigue with ACE insertion/deletion polymorphism in Gulf War veterans. Muscle Nerve. 2004;30(1):38-43.
    1. Hoffmann M, Kleine-Weber H, Schroeder S, et al. . SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-280.e8.
    1. Sriramula S, Xia H, Xu P, Lazartigues E. Brain-targeted angiotensin-converting enzyme 2 overexpression attenuates neurogenic hypertension by inhibiting cyclooxygenase-mediated inflammation. Hypertens (Dallas, Tex 1979). 2015;65(3):577-586. doi:10.1161/hypertensionaha.114.04691
    1. Gane SB, Kelly C, Hopkins C. Isolated sudden onset anosmia in COVID-19 infection. A novel syndrome? Rhinology. 2020;58(3):299-301.
    1. Wheatland R. Molecular mimicry of ACTH in SARS - implications for corticosteroid treatment and prophylaxis. Med Hypotheses. 2004;63(5):855-862.
    1. Lofthouse M. Hypocortisolism in survivors of SARS. Nat Clin Pract Endocrinol Metab. 2005;1(1):8.
    1. Vilar L, Abucham J, Albuquerque JL, et al. . Controversial issues in the management of hyperprolactinemia and prolactinomas - an overview by the Neuroendocrinology Department of the Brazilian Society of Endocrinology and Metabolism. Arch Endocrinol Metab. 2018;62(2):236-263.
    1. Vardas K, Apostolou K, Briassouli E, et al. . Early response roles for prolactin cortisol and circulating and cellular levels of heat shock proteins 72 and 90α in severe sepsis and SIRS. Biomed Res Int. 2014;2014:803561.
    1. Tasker RC, Roe MF, Bloxham DM, White DK, Ross-Russell RI, O’Donnell DR. The neuroendocrine stress response and severity of acute respiratory syncytial virus bronchiolitis in infancy. Intensive Care Med. 2004;30(12):2257-2262.
    1. Yu-Lee LY. Prolactin modulation of immune and inflammatory responses. Recent Prog Horm Res. 2002;57:435-455.
    1. Baldeweg SE, Ball S, Brooke A, et al. ; Society for Endocrinology Clinical Committee Society for Endocrinology Clinical Guidance: inpatient management of cranial diabetes insipidus. Endocr Connect. 2018;7(7):G8-G11.
    1. Filho AG, Ferreira AJ, Santos SH, et al. . Selective increase of angiotensin(1-7) and its receptor in hearts of spontaneously hypertensive rats subjected to physical training. Exp Physiol. 2008;93(5):589-598.
    1. Dong C, Li X, Qifa S, Hu C, Su F, Dai J. Hypokalemia and clinical implications in patients with coronavirus disease 2019 (COVID-19). medRxiv. January 2020:2020.02.27.20028530. doi:10.1101/2020.02.27.20028530
    1. Cycloset, Parlodel (bromocriptine) dosing, indications, interactions, adverse effects, and more . Accessed April 22, 2020.
    1. Tulloch KJ, Dodin P, Tremblay-Racine F, Elwood C, Money D, Boucoiran I. Cabergoline: a review of its use in the inhibition of lactation for women living with HIV. J Int AIDS Soc. 2019;22(6):e25322.
    1. Lin SJ, Wu ZR, Cao L, et al. . Pituitary tumor suppression by combination of cabergoline and chloroquine. J Clin Endocrinol Metab. 2017;102(10):3692-3703.
    1. COVID-19 resources for managing endocrine conditions | Society for Endocrinology . Accessed April 14, 2020.
    1. Ding Y, Wang H, Shen H, et al. . The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J Pathol. 2003;200(3):282-289.
    1. Tresoldi AS, Sumilo D, Perrins M, et al. . Increased infection risk in Addison’s disease and congenital adrenal hyperplasia. J Clin Endocrinol Metab. 2020;105(2):418-429. doi:10.1210/clinem/dgz006.
    1. El-Maouche D, Hargreaves CJ, Sinaii N, Mallappa A, Veeraraghavan P, Merke DP. Longitudinal assessment of illnesses, stress dosing, and illness sequelae in patients with congenital adrenal hyperplasia. J Clin Endocrinol Metab. 2018;103(6):2336-2345.
    1. Arlt W; Society for Endocrinology Clinical Committee Society for Endocrinology Endocrine Emergency Guidance: emergency management of acute adrenal insufficiency (adrenal crisis) in adult patients. Endocr Connect. 2016;5(5):G1-G3.
    1. Prete A, Taylor AE, Bancos I, et al. . Prevention of adrenal crisis: cortisol responses to major stress compared to stress dose hydrocortisone delivery. J Clin Endocrinol Metab. 2020;105(7). doi:10.1210/clinem/dgaa133
    1. Arlt W, Baldeweg SE, Pearce SHS, Simpson HL.. Clinical management guidance during the COVID-19 pandemic: adrenal insufficiency. Eur J Endocrinol. 2020:1-21.
    1. Dineen R, Thompson CJ, Sherlock M. Adrenal crisis: prevention and management in adult patients. Ther Adv Endocrinol Metab. 2019;10:2042018819848218.
    1. Bornstein SR, Allolio B, Arlt W, et al. . Diagnosis and treatment of primary adrenal insufficiency: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2016;101(2):364-389.
    1. Auyeung TW, Lee JS, Lai WK, et al. . The use of corticosteroid as treatment in SARS was associated with adverse outcomes: a retrospective cohort study. J Infect. 2005;51(2):98-102.
    1. Clinical management of severe acute respiratory infection when COVID-19 is suspected . Accessed April 14, 2020.
    1. Marik PE, Levitov A. The “koala stress syndrome” and adrenal responsiveness in the critically ill. Intensive Care Med. 2010;36(11):1805-1806.
    1. Annane D, Pastores SM, Rochwerg B, et al. . Guidelines for the diagnosis and management of critical illness-related corticosteroid insufficiency (CIRCI) in critically ill patients (part I): Society of Critical Care Medicine (SCCM) and European Society of Intensive Care Medicine (ESICM) 2017. Crit Care Med. 2017;45(12):2078-2088.
    1. Cohen J, Ward G, Prins J, Jones M, Venkatesh B. Variability of cortisol assays can confound the diagnosis of adrenal insufficiency in the critically ill population. Intensive Care Med. 2006;32(11):1901-1905.
    1. Epperla N, McKiernan F. Iatrogenic Cushing syndrome and adrenal insufficiency during concomitant therapy with ritonavir and fluticasone. Springerplus. 2015;4:455.
    1. Pivonello R, Ferrigno R, Isidori AM, Biller BMK, Grossman AB, Colao A. Covid-19 disease and Cushing’s syndrome: recommendations for a special population with endogenous glucocorticoid excess. Lancet Diabet Endocrinol 2020;in press.
    1. Guan WJ, Liang WH, Zhao Y, et al. . Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020;55(5):2000547.
    1. Aranda G, Lopez C, Fernandez-Ruiz R, et al. . Circulatory immune cells in Cushing syndrome: bystanders or active contributors to atherometabolic injury? A study of adhesion and activation of cell surface markers. Int J Endocrinol. 2017;2017:2912763.
    1. Thachil J, Tang N, Gando S, et al. . ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18(5):1023-1026.
    1. Isidori AM, Minnetti M, Sbardella E, Graziadio C, Grossman AB. Mechanisms in endocrinology: the spectrum of haemostatic abnormalities in glucocorticoid excess and defect. Eur J Endocrinol. 2015;173(3):R101-R113.
    1. van der Pas R, Leebeek FW, Hofland LJ, de Herder WW, Feelders RA. Hypercoagulability in Cushing’s syndrome: prevalence, pathogenesis and treatment. Clin Endocrinol (Oxf). 2013;78(4):481-488.
    1. Preda VA, Sen J, Karavitaki N, Grossman AB. Etomidate in the management of hypercortisolaemia in Cushing’s syndrome: a review. Eur J Endocrinol. 2012;167(2):137-143.
    1. Wong SWP, Yap YW, Narayanan RP, et al. . Etomidate in the management of severe Cushing’s disease and MRSA bacteraemia in a district general hospital in the United Kingdom. Endocrinol Diabetes Metab Case Rep. 2019;2019. doi:10.1530/EDM-19-0044.
    1. Yu R, Wei M. False positive test results for pheochromocytoma from 2000 to 2008. Exp Clin Endocrinol Diabetes. 2010;118(9):577-585. doi:10.1055/s-0029-1237699
    1. Lenders JW, Duh QY, Eisenhofer G, et al. ; Endocrine Society Pheochromocytoma and paraganglioma: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2014;99(6):1915-1942.
    1. Wang W, Ye Y, Yao H, et al. . Evaluation and observation of serum thyroid hormone and parathyroid hormone in patients with severe acute respiratory syndrome. J Chin Antituberculous Assoc. 2003;25:232-234.
    1. Jonklaas J, Bianco AC, Bauer AJ, et al. ; American Thyroid Association Task Force on Thyroid Hormone Replacement Guidelines for the treatment of hypothyroidism: prepared by the American Thyroid Association task force on thyroid hormone replacement. Thyroid. 2014;24(12):1670-1751.
    1. Wei L, Sun S, Xu CH, et al. . Pathology of the thyroid in severe acute respiratory syndrome. Hum Pathol. 2007;38(1):95-102.
    1. Sun S, Wei L, Zhang J, Xu Y, He FJ, Gu J. [Pathology and immunohistochemistry of thyroid in severe acute respiratory syndrome]. Zhonghua Yi Xue Za Zhi. 2005;85(10):667-670.
    1. Ding Y, He L, Zhang Q, et al. . Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol. 2004;203(2):622-630.
    1. Brancatella A, Ricci D, Viola N, Sgrò D, Santini F, Latrofa F.. Subacute thyroiditis after SARS-CoV-2 infection. J Clin Endocrinol Metab. 105(7):dgaa276. doi:10.1210/clinem/dgaa276
    1. COVID-19 resources for managing endocrine conditions. Society for Endocrinology . Accessed April 18, 2020.
    1. Romanelli A, Mascolo S. Immunosuppression drug-related and clinical manifestation of coronavirus disease 2019: a therapeutical hypothesis. Am J Transplant. 2020;20(7):1947-1948.
    1. Fang HJ, Yang JK. Tissue-specific pattern of angiotensin-converting enzyme 2 expression in rat pancreas. J Int Med Res. 2010;38(2):558-569.
    1. Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010;47(3):193-199.
    1. Liu F, Long X, Zou W, et al. . Highly ACE2 expression in pancreas may cause pancreas damage after SARS-CoV-2 infection. medRxiv. January 2020:2020.02.28.20029181. doi:10.1101/2020.02.28.20029181
    1. Roca-Ho H, Riera M, Palau V, Pascual J, Soler MJ. Characterization of ACE and ACE2 expression within different organs of the NOD mouse. Int J Mol Sci. 2017;18(3). doi:10.3390/ijms18030563.
    1. Lang Z, Zhang L, Zhang S, et al. . Pathological study on severe acute respiratory syndrome. Chin Med J (Engl). 2003;116(7):976-980.
    1. Gu J, Gong E, Zhang B, et al. . Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415-424.
    1. Shi X, Gong E, Gao D, et al. . Severe acute respiratory syndrome associated coronavirus is detected in intestinal tissues of fatal cases. Am J Gastroenterol. 2005;100(1):169-176.
    1. Pusch E, Renz H, Skevaki C. Respiratory virus-induced heterologous immunity: part of the problem or part of the solution? Allergo J. 2018;27(3):28-45.
    1. Zhou J, Tan J. Diabetes patients with COVID-19 need better blood glucose management in Wuhan, China. Metabolism. 2020;107:154216.
    1. COVID-19 and Diabetes: Known Mechanisms and a “New Beast”? . Accessed April 18, 2020.
    1. Brufsky A. Hyperglycemia, hydroxychloroquine, and the COVID-19 pandemic. J Med Virol. 2020;92(7):770-775.
    1. The Clinical Features of SARS Patients with Diabetes or Secondary Hyperglycemia. American Diabetes Association . Accessed April 18, 2020.
    1. Katulanda P, Dissanayake HA, Ranathunga I, et al. . et al. Prevention and management of COVID-19 among patients with diabetes: an appraisal of the literature [published online ahead of print, May 14, 2020]. Diabetologia.2020:1-13. doi:10.1007/s00125-020-05164-x
    1. Bornstein SR, Rubino F, Khunti K, et al. . Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol. 2020;8(6):546-550.
    1. Drucker DJ. Coronavirus infections and type 2 diabetes—shared pathways with therapeutic implications. Endocr Rev. 2020;41(3). doi:10.1210/endrev/bnaa011
    1. Fadini GP, Morieri ML, Longato E, Avogaro A. Prevalence and impact of diabetes among people infected with SARS-CoV-2. J Endocrinol Invest. 2020;43(6):867-869.
    1. Chen C, Chen C, Yan JT, Zhou N, Zhao JP, Wang DW. [Analysis of myocardial injury in patients with COVID-19 and association between concomitant cardiovascular diseases and severity of COVID-19]. Zhonghua Xin Xue Guan Bing Za Zhi. 2020;48(0):E008.
    1. Dietz W, Santos-Burgoa C. Obesity and its implications for COVID-19 mortality. Obesity (Silver Spring). 2020;28(6):1005.
    1. Zhu L, She ZG, Cheng X, et al. . Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab. 2020;31(6):1068-1077.e3.
    1. Hofland J, Kaltsas G, de Herder WW. Advances in the diagnosis and management of well-differentiated neuroendocrine neoplasms. Endocr Rev. 2020;41(2):371-403. doi:10.1210/endrev/bnz004
    1. Casey RT, Valk GD, Schalin-Jantti C, Grossman AB, Thakker RV. Endocrinology in the time of COVID-19: Management of neuroendocrine neoplasms (NENs). Eur J Endocrino l.2020:1-24. doi:10.1530/EJE-20-0424
    1. Zhou Y, Frey TK, Yang JJ. Viral calciomics: interplays between Ca2+ and virus. Cell Calcium. 2009;46(1):1-17.
    1. Minakshi R, Padhan K, Rehman S, Hassan MI, Ahmad F. The SARS coronavirus 3a protein binds calcium in its cytoplasmic domain. Virus Res. 2014;191:180-183.
    1. Nachimuthu S, Assar MD, Schussler JM. Drug-induced QT interval prolongation: mechanisms and clinical management. Ther Adv Drug Saf. 2012;3(5):241-253.
    1. Uwitonze AM, Razzaque MS. Role of magnesium in vitamin D activation and function. J Am Osteopath Assoc. 2018;118(3):181-189.
    1. Rondanelli M, Miccono A, Lamburghini S, et al. . Self-care for common colds: the pivotal role of vitamin D, vitamin C, ainc, and echinacea in three main immune interactive clusters (physical barriers, innate and adaptive immunity) involved during an episode of common colds - practical advice on dosages. Evidence-based Complement Altern Med. 2018;2018. doi:10.1155/2018/5813095
    1. Dancer RC, Parekh D, Lax S, et al. . Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax. 2015;70(7):617-624.
    1. Coussens AK, Wilkinson RJ, Nikolayevskyy V, et al. . Ethnic variation in inflammatory profile in tuberculosis. Plos Pathog. 2013;9(7):e1003468.
    1. Wong CK, Lam CW, Wu AK, et al. . Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol. 2004;136(1):95-103.
    1. Mahallawi WH, Khabour OF, Zhang Q, Makhdoum HM, Suliman BA. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine. 2018;104:8-13.
    1. Sharifi A, Vahedi H, Nedjat S, Rafiei H, Hosseinzadeh-Attar MJ. Effect of single-dose injection of vitamin D on immune cytokines in ulcerative colitis patients: a randomized placebo-controlled trial. Apmis. 2019;127(10):681-687.
    1. Cantorna MT, Snyder L, Lin YD, Yang L. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients. 2015;7(4):3011-3021.
    1. Vankadari N, Wilce JA. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect. 2020;9(1):601-604.
    1. Komolmit P, Charoensuk K, Thanapirom K, et al. . Correction of vitamin D deficiency facilitated suppression of IP-10 and DPP IV levels in patients with chronic hepatitis C: a randomised double-blinded, placebo-control trial. Plos One. 2017;12(4):e0174608.
    1. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586-590.
    1. Xu J, Yang J, Chen J, Luo Q, Zhang Q, Zhang H. Vitamin D alleviates lipopolysaccharide‑induced acute lung injury via regulation of the renin‑angiotensin system. Mol Med Rep. 2017;16(5):7432-7438.
    1. Crowe FL, Jolly K, Macarthur C, et al. . Trends in the incidence of testing for Vitamin D deficiency in primary care in the UK: a retrospective analysis of the Health Improvement Network (THIN), 2005–2015. BMJ Open. 2019;9(6):1-8. doi:10.1136/bmjopen-2018-028355
    1. Coronavirus (COVID-19) related deaths by ethnic group, England and Wales - Office for National Statistics . Accessed May 24, 2020.
    1. Grant WB, Lahore H, McDonnell SL, et al. . Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020;12(4):988. doi:10.3390/nu12040988
    1. Gruber-Bzura BM. Vitamin D and influenza—prevention or therapy? Int J Mol Sci. 2018;19(8). doi:10.3390/ijms19082419
    1. Martineau AR, Jolliffe DA, Hooper RL, et al. . Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. Bmj. 2017;356:i6583.
    1. Amrein K, Scherkl M, Hoffmann M, et al. . Vitamin D deficiency 2.0: an update on the current status worldwide. Eur J Clin Nutr. 2020. doi:10.1038/s41430-020-0558-y
    1. Heaney RP, Davies KM, Chen TC, Holick MF, Barger-Lux MJ. Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am J Clin Nutr. 2003;77(1):204-210.
    1. Ross AC, Manson JE, Abrams SA, et al. . The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96(1):53-58.
    1. Watkins J. Preventing a covid-19 pandemic. BMJ. 2020;368:m810.
    1. Chen Y, Guo Y, Pan Y, Zhao Z. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun. 2020;525. doi:10.1016/j.bbrc.2020.02.071
    1. Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 2002;532(1–2):107-110. doi:10.1016/s0014-5793(02)03640-2
    1. Wang Z, Xu X. scRNA-seq profiling of human testes reveals the presence of the ACE2 receptor, a target for SARS-CoV-2 infection in spermatogonia, Leydig and Sertoli cells. Cells. 2020;9(4). doi:10.3390/cells9040920
    1. Xu J, Qi L, Chi X, et al. . Orchitis: a complication of severe acute respiratory syndrome (SARS). Biol Reprod. 2006;74(2):410-416.

Source: PubMed

Подписаться