Photobiomodulation using low-level laser therapy (LLLT) for patients with chronic traumatic brain injury: a randomized controlled trial study protocol

Guilherme da Cruz Ribeiro Poiani, Ana Luiza Zaninotto, Ana Maria Costa Carneiro, Renato Amaro Zangaro, Afonso Shiguemi Inoue Salgado, Rodolfo Borges Parreira, Almir Ferreira de Andrade, Manoel Jacobsen Teixeira, Wellingson Silva Paiva, Guilherme da Cruz Ribeiro Poiani, Ana Luiza Zaninotto, Ana Maria Costa Carneiro, Renato Amaro Zangaro, Afonso Shiguemi Inoue Salgado, Rodolfo Borges Parreira, Almir Ferreira de Andrade, Manoel Jacobsen Teixeira, Wellingson Silva Paiva

Abstract

Background: Photobiomodulation using low-level laser therapy (LLLT) has been tested as a new technique to optimize recovery of patients with traumatic brain injury (TBI). The aim of this study is to evaluate inhibitory attentional control after 18 sessions of active LLLT and compare with the placebo group (sham LLLT). Our exploratory analysis will evaluate the efficacy of the active LLLT on verbal and visuospatial episodic memory, executive functions (working memory, verbal and visuospatial fluency, attentional processes), and anxiety and depressive symptoms compared to the sham group.

Methods/design: A randomized double-blinded trial will be made in 36 patients with moderate and severe TBI. The active LLLT will use an optical device composed of LEDs emitting 632 nm of radiation at the site with full potency of 830 mW. The cranial region with an area of 400 cm2 will be irradiated for 30 min, giving a total dose per session of 3.74 J/cm2. The sham LLLT group contains only an LED device with power < 1 mW, only serving to simulate the irradiation. Each patient will be irradiated three times per week for six weeks, totaling 18 sessions. Neuropsychological assessments will be held one week before the beginning of the sessions, after one week, and three months after the end of LLLT sessions. Memory domain, attention, executive functioning, and visual construction will be evaluated, in addition to symptoms of depression, anxiety, and social demographics.

Discussion: LLLT has been demonstrated as a safe and effective technique in significantly improving the memory, attention, and mood performance in healthy and neurologic patients. We expect that our trial can complement previous finds, as an effective low-cost therapy to improve cognitive sequel after TBI.

Trial registration: ClinicalTrials.gov, NCT02393079 . Registered on 20 February 2015.

Keywords: Anxiety; Cognition; Depression; Memory; Photobiomodulation; Rehabilitation; Traumatic brain injury.

Conflict of interest statement

Ethics approval and consent to participate

This study was approved by Committee for Ethics in Research of Psychology HC-FMUSP (COSEPE), number 15/2014; and the Ethics Committee of Project Research Analysis of the Faculty of Medicine HC-FMUSP, process number 42092815.9.0000.0068. All patients were clearly informed about the procedures and were required to sign consent form before inclusion in the study.

Consent for publication

Approved by all co-authors.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT): enrollment, assessment, interventions, and data collection. BDI-II: Beck Depression Inventory, 2nd edition; BAI: Beck Anxiety Inventory; TMT A and B: Test Trail Making form A and B; COWAT: Controlled Oral Word Association Test; SNL: Sequence of Numbers and Letters; DSST: Digit Symbol Substitution Test; RAVLT: Rey Auditory Verbal Learning Test
Fig. 2
Fig. 2
Flowchart of the LLLT study
Fig. 3
Fig. 3
a Two identical helmets, active and sham stimulation. b The inside view of the active LLLT helmet

References

    1. Kushner DS, Johnson-Greene D. Changes in cognition and continence as predictors of rehabilitation outcomes in individuals with severe traumatic brain injury. J Rehabil Res Dev. 2014;51:1057–68. doi: 10.1682/JRRD.2014.01.0002.
    1. Coronado VG, McGuire LC, Sarmiento K, Bell J, Lionbarger MR, Jones CD, et al. Trends in traumatic brain injury in the U.S. and the public health response: 1995–2009. J Safety Res. 2012;43:299–307. doi: 10.1016/j.jsr.2012.08.011.
    1. Peeters S, Blaine C, Vycheth I, Nang S, Vuthy D, Park KB. Epidemiology of traumatic brain injuries at a major government hospital in Cambodia. World Neurosurg. 2017;97:580–9. doi: 10.1016/j.wneu.2016.09.127.
    1. Kamal VK, Agrawal D, Pandey RM. Epidemiology, clinical characteristics and outcomes of traumatic brain injury: Evidences from integrated level 1 trauma center in India. J Neurosci Rural Pract. 2016;7:515–25. doi: 10.4103/0976-3147.188637.
    1. de Almeida CER, de Sousa JL, Dourado JC, Gontijo PA, Dellaretti MA, Costa BS. Traumatic brain injury epidemiology in Brazil. World Neurosurg. 2016;87:540–7. doi: 10.1016/j.wneu.2015.10.020.
    1. Menon DK, Schwab K, Wright DW, Maas AI. Demographics and Clinical Assessment Working Group of the International and Interagency Initiative Toward Common Data Elements for Research on Traumatic Brain Injury and Psychological Health. Position statement: definition of traumatic brain injury. Arch Phys Med Rehabil. 2010;91:1637–40. doi: 10.1016/j.apmr.2010.05.017.
    1. Corrigan JD, Selassie AW, Orman JA. The epidemiology of traumatic brain injury. J Head Trauma Rehabil. 2010;25:72–80. doi: 10.1097/HTR.0b013e3181ccc8b4.
    1. Niogi SN, Mukherjee P, Ghajar J, Johnson CE, Kolster R, Lee H, et al. Structural dissociation of attentional control and memory in adults with and without mild traumatic brain injury. Brain. 2008;131:3209–21. doi: 10.1093/brain/awn247.
    1. Skandsen T, Finnanger TG, Andersson S, Lydersen S, Brunner JF, Vik A. Cognitive impairment 3 months after moderate and severe traumatic brain injury: a prospective follow-up study. Arch Phys Med Rehabil. 2010;91:1904–13. doi: 10.1016/j.apmr.2010.08.021.
    1. Zaninotto AL, Guirado VMD, Baldivia B, Nunes MD, Amorim RL, Teixeira MJ, et al. Improvement of verbal fluency in patients with diffuse brain injury over time. Neuropsychiatr Dis Treat. 2014;10:1155–60.
    1. Costa TL, Zaninotto ALC, Benute GG, De Lucia MC, Paiva WS, Wagemans J, et al. Perceptual organization deficits in traumatic brain injury patients. Neuropsychologia. 2015;78:142–52. doi: 10.1016/j.neuropsychologia.2015.10.008.
    1. Zaninotto AL, Vicentini JE, Solla DJF, Silva TT, Guirado VM, Feltrin F, et al. Visuospatial memory improvement in patients with diffuse axonal injury (DAI): a 1-year follow-up study. Acta Neuropsychiatrica. 2017;29:35–42. doi: 10.1017/neu.2016.29.
    1. Kinnunen KM, Greenwood R, Powell JH, Leech R, Hawkins PC, Bonnelle V, et al. White matter damage and cognitive impairment after traumatic brain injury. Brain. 2011;134:449–63. doi: 10.1093/brain/awq347.
    1. Zaninotto AL, Vicentini JE, Fregni F, Rodrigues PA, Botelho C, de Lucia MC, et al. Updates and current perspectives of psychiatric assessments after traumatic brain injury: a systematic review. Front Psych. 2016;7:95.
    1. Sinclair KL, Ponsford JL, Taffe J, Lockley SW, Rajaratnam SM. Randomized controlled trial of light therapy for fatigue following traumatic brain injury. Neurorehabil Neural Repair. 2014;28:303–13. doi: 10.1177/1545968313508472.
    1. Esbjornsson E, Skoglund T, Mitsis MK, Hofgren C, Larsson J, Sunnerhagen KS. Cognitive impact of traumatic axonal injury (TAI) and return to work. Brain Inj. 2013;27:521–8. doi: 10.3109/02699052.2012.743179.
    1. Naeser MA, Saltmarche A, Krengel MH, Hamblin MR, Knight JA. Improved cognitive function after transcranial, light-emitting diode treatments in chronic, traumatic brain injury: two case reports. Photomed Laser Surg. 2011;29:351–8. doi: 10.1089/pho.2010.2814.
    1. Li SS, Zaninotto AL, Neville IS, Paiva WS, Nunn D, Fregni F. Clinical utility of brain stimulation modalities following traumatic brain injury: current evidence. Neuropsychiatr Dis Treat. 2015;11:1573–86.
    1. Fitzgerald PB, Hoy KE, Maller JJ, Herring S, Segrave R, McQueen S, et al. Transcranial magnetic stimulation for depression after a traumatic brain injury: a case study. J ECT. 2011;27:38–40. doi: 10.1097/YCT.0b013e3181eb30c6.
    1. Lesniak M, Polanowska K, Seniow J, Czlonkowska A. Effects of repeated anodal tDCS coupled with cognitive training for patients with severe traumatic brain injury: a pilot randomized controlled trial. J Head Trauma Rehabil. 2014;29:E20–9. doi: 10.1097/HTR.0b013e318292a4c2.
    1. Villamar MF, Portilla AS, Fregni F, Zafonte R. Noninvasive brain stimulation to modulate neuroplasticity in traumatic brain injury. Neuromodulation. 2012;15:326–38. doi: 10.1111/j.1525-1403.2012.00474.x.
    1. Zhang Q, Ma HY, Nioka S, Chance B. Study of near infrared technology for intracranial hematoma detection. J Biomed Opt. 2000;5:206–13. doi: 10.1117/1.429988.
    1. Antunes F, Boveris A, Cadenas E. On the mechanism and biology of cytochrome oxidase inhibition by nitric oxide. Proc Natl Acad Sci U S A. 2004;101:16774–9. doi: 10.1073/pnas.0405368101.
    1. Khuman J, Zhang J, Park J, Carroll JD, Donahue C, Whalen MJ. Low-level laser light therapy improves cognitive deficits and inhibits microglial activation after controlled cortical impact in mice. J Neurotrauma. 2012;29:408–17. doi: 10.1089/neu.2010.1745.
    1. Huang YY, Gupta A, Vecchio D, de Arce VJ, Huang SF, Xuan W, et al. Transcranial low level laser (light) therapy for traumatic brain injury. J Biophotonics. 2012;5:827–37. doi: 10.1002/jbio.201200077.
    1. Karu TI, Pyatibrat LV, Kolyakov SF, Afanasyeva NI. Absorption measurements of a cell monolayer relevant to phototherapy: Reduction of cytochrome c oxidase under near IR radiation. J Photochem Photobiol B Biol. 2005;81:98–106. doi: 10.1016/j.jphotobiol.2005.07.002.
    1. Chen ACH, Arany PR, Huang YY, Tomkinson EM, Sharma SK, Kharkwal GB, et al. Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PloS One. 2011;6:e22453. doi: 10.1371/journal.pone.0022453.
    1. Thunshelle C, Hamblin MR. Transcranial low-level laser (light) therapy for brain injury. Photomed Laser Surg. 2016;34:587–98. doi: 10.1089/pho.2015.4051.
    1. Richardson RM, Sun D, Bullock MR. Neurogenesis after traumatic brain injury. Neurosurg Clin N Am. 2007;18:169–81. doi: 10.1016/j.nec.2006.10.007.
    1. Oron U, Yaakobi T, Oron A, Mordechovitz D, Shofti R, Hayam G, et al. Low-energy laser irradiation reduces formation of scar tissue after myocardial infarction in rats and dogs. Circulation. 2001;103:296–301. doi: 10.1161/01.CIR.103.2.296.
    1. Leung MCP, Lo SCL, Siu FKW, So KF. Treatment of experimentally induced transient cerebral ischemia with low energy laser inhibits nitric oxide synthase activity and up-regulates the expression of transforming growth factor-beta 1. Lasers Surg Med. 2002;31:283–8. doi: 10.1002/lsm.10096.
    1. Nissan M, Rochkind S, Razon N, Bartal A. HeNe laser irradiation delivered transcutaneously - its effects on the sciatic nerve of rats. Lasers Surg Med. 1986;6:435–8. doi: 10.1002/lsm.1900060502.
    1. Byrnes KR, Waynant RW, Ilev IK, Wu X, Barna L, Smith K, et al. Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med. 2005;36:171–85. doi: 10.1002/lsm.20143.
    1. Lampl Y, Zivin JA, Fisher M, Lew R, Welin L, Dahlof B, et al. Infrared laser therapy for ischemic stroke: A new treatment strategy results of the NeuroThera effectiveness and Safety Trial-1 (NEST-1) Stroke. 2007;38:1843–9. doi: 10.1161/STROKEAHA.106.478230.
    1. Naeser MA, Hamblin MR. Traumatic brain injury: a major medical problem that could be treated using transcranial, red/near-infrared LED photobiomodulation. Photomed Laser Surg. 2015;33:443–6. doi: 10.1089/pho.2015.3986.
    1. Naeser MA, Martin PI, Ho MD, Krengel MH, Bogdanova Y, Knight JA, et al. Transcranial, red/near-infrared light-emitting diode therapy to improve cognition in chronic traumatic brain injury. Photomed Laser Surg. 2016;34:610–26. doi: 10.1089/pho.2015.4037.
    1. Naeser MA, Zafonte R, Krengel MH, Martin PI, Frazier J, Hamblin MR, et al. Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: open-protocol study. J Neurotrauma. 2014;31:1008–17. doi: 10.1089/neu.2013.3244.
    1. Saltmarche AE, Naeser MA, Ho KF, Hamblin MR, Lim L. Significant improvement in cognition in mild to moderately severe dementia cases treated with transcranial plus intranasal photobiomodulation: case series report. Photomed Laser Surg. 2017;35:432–41. doi: 10.1089/pho.2016.4227.
    1. Haeussinger FB, Heinzel S, Hahn T, Schecklmann M, Ehlis AC, Fallgatter AJ. Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging. PloS One. 2011;6:e26377. doi: 10.1371/journal.pone.0026377.
    1. Karu TI. Molecular mechanism of the therapeutic effect of low-intensity laser irradiation. Dokl Akad Nauk SSSR. 1986;291:1245–9.
    1. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry. 1961;4:561–71. doi: 10.1001/archpsyc.1961.01710120031004.
    1. Beck AT, Steer RA. Beck Anxiety Inventory manual. San Antonio, TX: Psychological Corporation; 1993.
    1. Spreen O, Strauss E. A compendium of neuropsychological tests administration norms and commentary. New York, NY: Oxford University Press; 1998.
    1. Stuss DT, Floden D, Alexander MP, Levine B, Katz D. Stroop performance in focal lesion patients: dissociation of processes and frontal lobe lesion location. Neuropsychologia. 2001;39:771–86. doi: 10.1016/S0028-3932(01)00013-6.
    1. Regard M, Strauss E, Knapp P. Children’s production on verbal and non-verbal fluency tasks. Percept Mot Skills. 1982;55:839–44. doi: 10.2466/pms.1982.55.3.839.
    1. Burik TE. Relative roles of the learning and motor factors involved in the digit symbol test. J Psychol. 1950;30:33–42. doi: 10.1080/00223980.1950.9916049.
    1. McLeod DR, Griffiths RR, Bigelow GE, Yingling J. An automated version of the digit symbol substitution test (DSST) Behav Res Methods Instrum. 1982;14:463–6. doi: 10.3758/BF03203313.
    1. Malloy-Diniz LF, Lasmar VA, Gazinelli LdeS, Fuentes D, Salgado JV. The Rey Auditory-Verbal Learning Test: applicability for the Brazilian elderly population. Revista Brasileira De Psiquiatria. 2007;29:324–9
    1. Nascimento E, Figueiredo VL. Escala de Inteligência Weschler para Adultos - manual técnico. São Paulo: Casa do Psicólogo; 2005.
    1. Rey A. Figuras complexas de Rey - manual técnico. São Paulo: Casa do Psicologo; 2010
    1. Tombaugh TN, Faulkner P, Hubley AM. Effects of age on the Rey-Osterrieth and taylor complex figures - test-retest data using an intentional learning-paradigm. J Clin Exp Neuropsychol. 1992;14:647–61. doi: 10.1080/01688639208402853.
    1. Lezak MD, Howieson DB, Bigler ED, Tranel D. Neuropsychological assessment. 5. New York: Oxford University Press; 2012.
    1. Smith KC. Laser (and LED) therapy is phototherapy. Photomed Laser Surg. 2005;23:78–80. doi: 10.1089/pho.2005.23.78.
    1. Lavery LA, Murdoch DP, Williams J, Lavery DC. Does anodyne light therapy improve peripheral neuropathy in diabetes? A double-blind, sham-controlled, randomized trial to evaluate monochromatic infrared photoenergy. Diabetes Care. 2008;31:316–21. doi: 10.2337/dc07-1794.
    1. Rojas JC, Bruchey AK, Gonzalez-Lima F. Low-level light therapy improves cortical metabolic capacity and memory retention. J Alzheimers Dis. 2012;32:741–52.
    1. Rojas JC, Gonzalez-Lima F. Neurological and psychological applications of transcranial lasers and LEDs. Biochem Pharmacol. 2013;86:447–57. doi: 10.1016/j.bcp.2013.06.012.
    1. Naeser M, Ho M, Martin P, Treglia EM, Krengel MH, Hamblin M, et al. Improved language after scalp application of red/near-infrared light-emitting diodes: pilot study supporting a new, noninvasive treatment for chronic aphasia. Procedia Social and Behavioral Sciences. 2012;61:138–139. doi: 10.1016/j.sbspro.2012.10.116.
    1. de Andrade AF, Paiva WS, de Amorim RLO, Figueredo EG, Rusafa Neto E, Teixeira MJ. The pathophysiological mechanisms following traumatic brain injury. Rev Assoc Med Bras. 2009;55:75–81. doi: 10.1590/S0104-42302009000100020.
    1. Naeser MA, Hamblin MR. Potential for transcranial laser or LED therapy to treat stroke, traumatic brain injury, and neurodegenerative disease. Photomed Laser Surg. 2011;29:443–6. doi: 10.1089/pho.2011.9908.
    1. Hennessy M, Hamblin MR. Photobiomodulation and the brain: a new paradigm. J Opt. 2017;19:013003. doi: 10.1088/2040-8986/19/1/013003.
    1. Lapchak PA. Taking a light approach to treating acute ischemic stroke patients: Transcranial near-infrared laser therapy translational science. Ann Med. 2010;42:576–86. doi: 10.3109/07853890.2010.532811.
    1. Schiffer F, Johnston AL, Ravichandran C, Polcari A, Teicher MH, Webb RH, et al. Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety. Behav Brain Funct. 2009;5:46. doi: 10.1186/1744-9081-5-46.
    1. Barrett DW, Gonzalez-Lima F. Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans. Neuroscience. 2013;230:13–23. doi: 10.1016/j.neuroscience.2012.11.016.

Source: PubMed

Подписаться