Macular Carotenoid Supplementation Improves Visual Performance, Sleep Quality, and Adverse Physical Symptoms in Those with High Screen Time Exposure

James M Stringham, Nicole T Stringham, Kevin J O'Brien, James M Stringham, Nicole T Stringham, Kevin J O'Brien

Abstract

The dramatic rise in the use of smartphones, tablets, and laptop computers over the past decade has raised concerns about potentially deleterious health effects of increased "screen time" (ST) and associated short-wavelength (blue) light exposure. We determined baseline associations and effects of 6 months' supplementation with the macular carotenoids (MC) lutein, zeaxanthin, and mesozeaxanthin on the blue-absorbing macular pigment (MP) and measures of sleep quality, visual performance, and physical indicators of excessive ST. Forty-eight healthy young adults with at least 6 h of daily near-field ST exposure participated in this placebo-controlled trial. Visual performance measures included contrast sensitivity, critical flicker fusion, disability glare, and photostress recovery. Physical indicators of excessive screen time and sleep quality were assessed via questionnaire. MP optical density (MPOD) was assessed via heterochromatic flicker photometry. At baseline, MPOD was correlated significantly with all visual performance measures (p < 0.05 for all). MC supplementation (24 mg daily) yielded significant improvement in MPOD, overall sleep quality, headache frequency, eye strain, eye fatigue, and all visual performance measures, versus placebo (p < 0.05 for all). Increased MPOD significantly improves visual performance and, in turn, improves several undesirable physical outcomes associated with excessive ST. The improvement in sleep quality was not directly related to increases in MPOD, and may be due to systemic reduction in oxidative stress and inflammation.

Keywords: computer vision syndrome; lutein; macular pigment; mesozeaxanthin; screen time; sleep quality; visual performance; zeaxanthin.

Conflict of interest statement

J.S. consults for the funding sponsor, discussing benefits of macular carotenoids. The funding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Figures

Figure 1
Figure 1
Percent change from baseline for MPOD and visual performance measures (noted in legend), at 6 months for both placebo and treatment groups. Error bars are +/− 1 SD. Asterisks denote statistically significant difference from placebo (p < 0.05). Definitions: MPOD = macular pigment optical density; CFF = critical flicker fusion frequency; CS = contrast sensitivity (plotted in terms of relative percentage change, not absolute sensitivity change); DG = disability glare; PSR = photostress recovery.
Figure 2
Figure 2
Percent change from baseline for physical indicators of excessive screen time (ST) (including sleep quality), at 6 months for both placebo and treatment groups. Error bars are +/− 1 SD. Asterisks denote statistically significant difference from placebo (p < 0.05).

References

    1. Gentile D.A., Reimer R.A., Nathanson A.I., Walsh D.A., Eisenmann J.C. Protective effects of parental monitoring of children’s media use: A prospective study. JAMA Pediatr. 2014;168:479–484. doi: 10.1001/jamapediatrics.2014.146.
    1. Tosini G., Ferguson I., Tsubota K. Effects of blue light on the circadian system and eye physiology. Mol Vis. 2016;22:61–72.
    1. Chang A.M., Aeschbach D., Duffy J.F., Czeisler C.A. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proc. Natl. Acad. Sci. USA. 2015;112:1232–1237. doi: 10.1073/pnas.1418490112.
    1. The Vision Council Digital Eye Strain Report. [(accessed on 14 April 2017)];2015 Available online: .
    1. The Nielsen Total Audience Report, Q1 2016. [(accessed on 10 April 2017)]; Available online: .
    1. Hansraj K.K. Assessment of stresses in the cervical spine caused by posture and position of the head. Surg. Technol. Int. 2014;25:277–279.
    1. Toomingas A., Hagberg M., Heiden M., Richter H., Westergren K.E., Tornqvist E.W. Risk factors, incidence and persistence of symptoms from the eyes among professional computer users. Work. 2014;47:291–301.
    1. Porcar E., Pons A.M., Lorente A. Visual and ocular effects from the use of flat-panel displays. Int. J. Ophthalmol. 2016;9:881–885.
    1. Chen J., Liang Y., Mai C., Zhong X., Qu C. General Deficit in Inhibitory Control of Excessive Smartphone Users: Evidence from an Event-Related Potential Study. Front Psychol. 2016;7:511. doi: 10.3389/fpsyg.2016.00511.
    1. Gowrisankaran S., Sheedy J.E. Computer vision syndrome: A review. Work. 2015;52:303–314. doi: 10.3233/WOR-152162.
    1. Hiromoto K., Kuse Y., Tsuruma K., Tadokoro N., Kaneko N., Shimazawa M., Hara H. Colored lenses suppress blue light-emitting diode light-induced damage in photoreceptor-derived cells. J. Biomed. Opt. 2016;21:35004. doi: 10.1117/1.JBO.21.3.035004.
    1. Chamorro E., Bonnin-Arias C., Pérez-Carrasco M.J., de Luna J.M., Vázquez D., Sánchez-Ramos C. Effects of light-emitting diode radiations on human retinal pigment epithelial cells in vitro. Photochem. Photobiol. 2013;89:468–473. doi: 10.1111/j.1751-1097.2012.01237.x.
    1. Humphries J.M., Khachik F. Distribution of lutein, zeaxanthin, and related geometrical isomers in fruit, vegetables, wheat, and pasta products. J. Agric. Food Chem. 2003;51:1322–1327. doi: 10.1021/jf026073e.
    1. Bone R.A., Landrum J.T., Friedes L.M., Gomez C.M., Kilburn M.D., Menendez E., Vidal I., Wang W. Distribution of lutein and zeaxanthin stereoisomers in the human retina. Exp. Eye Res. 1997;64:211–218. doi: 10.1006/exer.1996.0210.
    1. Seddon J.M., Ajani U.A., Sperduto R.D., Hiller R., Blair N., Burton T.C., Farber M.D., Gragoudas E.S., Haller J., Miller D.T., et al. Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye-disease Case-control Study Group. JAMA. 1994;272:1413–1420. doi: 10.1001/jama.1994.03520180037032.
    1. Richer S., Stiles W., Statkute L., Pulido J., Frankowski J., Rudy D., Pei K., Tsipursky M., Nyland J. Double-masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: The Veterans LAST study (Lutein Antioxidant Supplementation Trial) Optometry. 2004;75:216–230. doi: 10.1016/S1529-1839(04)70049-4.
    1. Futterman S. Metabolism and Photochemistry in the Retina. In: Moses R.A., editor. Adler’s Physiology of the Eye. 6th ed. C.V. Mosby Company; St. Louis, MO, USA: 1975. pp. 406–419.
    1. Stringham J.M., O’Brien K.J., Stringham N.T. Contrast Sensitivity and Lateral Inhibition Are Enhanced With Macular Carotenoid Supplementation. Invest. Ophthalmol. Vis. Sci. 2017;58:2291–2295. doi: 10.1167/iovs.16-21087.
    1. Nolan J.M., Power R., Stringham J., Dennison J., Stack J., Kelly D., Moran R., Akuffo K.O., Corcoran L., Beatty S. Enrichment of Macular Pigment Enhances Contrast Sensitivity in Subjects Free of Retinal Disease: Central Retinal Enrichment Supplementation Trials-Report 1. Invest. Ophthalmol. Vis. Sci. 2016;57:3429–3439. doi: 10.1167/iovs.16-19520.
    1. Yao Y., Qiu Q.H., Wu X.W., Cai Z.Y., Xu S., Liang X.Q. Lutein supplementation improves visual performance in Chinese drivers: 1-year randomized, double-blind, placebo-controlled study. Nutrition. 2013;29:958–964. doi: 10.1016/j.nut.2012.10.017.
    1. Loughman J., Nolan J.M., Howard A.N., Connolly E., Meagher K., Beatty S. The impact of macular pigment augmentation on visual performance using different carotenoid formulations. Invest. Ophthalmol. Vis. Sci. 2012;53:7871–7880. doi: 10.1167/iovs.12-10690.
    1. Hammond B.R., Jr., Wooten B.R. CFF thresholds: Relation to macular pigment optical density. Ophthalmic Physiol. Opt. 2005;25:315–319. doi: 10.1111/j.1475-1313.2005.00271.x.
    1. Renzi L.M., Hammond B.R., Jr. The relation between the macular carotenoids, lutein and zeaxanthin, and temporal vision. Ophthalmic Physiol. Opt. 2010;30:351–357. doi: 10.1111/j.1475-1313.2010.00720.x.
    1. Stringham N.T., Stringham J.M. Temporal Visual Mechanisms May Mediate Compensation for Macular Pigment. Perception. 2015;44:1400–1415. doi: 10.1177/0301006615607119.
    1. Stringham J.M., Fuld K., Wenzel A.J. Action spectrum for photophobia. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2003;10:1852–1858. doi: 10.1364/JOSAA.20.001852.
    1. Wenzel A.J., Fuld K., Stringham J.M., Curran-Celentano J. Macular pigment optical density and photophobia light threshold. Vis. Res. 2006;28:4615–4622. doi: 10.1016/j.visres.2006.09.019.
    1. Stringham J.M., Garcia P.V., Smith P.A., McLin L.N., Foutch B.K. Macular pigment and visual performance in glare: benefits for photostress recovery, disability glare, and visual discomfort. Invest Ophthalmol. Vis. Sci. 2011;52:7406–7415. doi: 10.1167/iovs.10-6699.
    1. Hammond B.R., Jr., Fletcher L.M., Elliott J.G. Glare disability, photostress recovery, and chromatic contrast: Relation to macular pigment and serum lutein and zeaxanthin. Invest. Ophthalmol. Vis. Sci. 2013;54:476–481. doi: 10.1167/iovs.12-10411.
    1. Stringham J.M., Hammond B.R. Macular pigment and visual performance under glare conditions. Optom. Vis Sci. 2008;85:82–88. doi: 10.1097/OPX.0b013e318162266e.
    1. Curran-Celentano J., Hammond B.R., Jr., Ciulla T.A., Cooper D.A., Pratt L.M., Danis R.B. Relation between dietary intake, serum concentrations, and retinal concentrations of lutein and zeaxanthin in adults in a Midwest population. Am. J. Clin. Nutr. 2001;74:796–802.
    1. Stringham J.M., Stringham N.T. Serum and retinal responses to three different doses of macular carotenoids over 12 weeks of supplementation. Exp. Eye Res. 2016;151:1–8. doi: 10.1016/j.exer.2016.07.005.
    1. Wooten B.R., Hammond B.R., Land R., Snodderly D.M. A practical method of measuring macular pigment optical density. Invest. Ophthalmol. Vis. Sci. 1999;40:2481–2489.
    1. Wooten B.R., Hammond B.R., Smollon W. Assessment of the validity of heterochromatic flicker photometry for measuring macular pigment optical density in normal subjects. Optom. Vis. Sci. 2005;82:378–386. doi: 10.1097/01.OPX.0000162654.32112.A1.
    1. Stringham J.M., Hammond B.R., Nolan J.M., Wooten B.R., Mammen A., Smollon W., Snodderly D.M. The utility of using customized heterochromatic flicker photometry (cHFP) to measure macular pigment in patients with age-related macular degeneration. Exp. Eye Res. 2008;87:445–453. doi: 10.1016/j.exer.2008.08.005.
    1. Smollon W.E., Jr., Wooten B.R., Hammond B.R. Stimulus edge effects in the measurement of macular pigment using heterochromatic flicker photometry. J. Biomed. Opt. 2015;20:115004. doi: 10.1117/1.JBO.20.11.115004.
    1. Buysse D.J., Reynolds C.F., III, Monk T.H., Berman S.R., Kupfer D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989;28:193–213. doi: 10.1016/0165-1781(89)90047-4.
    1. Hurvich L.M., Jameson D. An opponent-process theory of color vision. Psychol. Rev. 1957;64:384–404. doi: 10.1037/h0041403.
    1. Vielma A., Delgado L., Elgueta C., Osorio R., Palacios A.G., Schmachtenberg O. Nitric oxide amplifies the rat electroretinogram. Exp. Eye Res. 2010;91:700–709. doi: 10.1016/j.exer.2010.08.014.
    1. Reddy S.C., Low C.K., Lim Y.P., Low L.L., Mardina F., Nursaleha M.P. Computer vision syndrome: A study of knowledge and practices in university students. Nepal. J. Ophthalmol. 2013;5:161–168. doi: 10.3126/nepjoph.v5i2.8707.
    1. Tsai J.W., Hannibal J., Hagiwara G., Colas D., Ruppert E., Ruby N.F., Heller H.C., Franken P., Bourgin P. Melanopsin as a sleep modulator: Circadian gating of the direct effects of light on sleep and altered sleep homeostasis in Opn4(-/-) mice. PLoS Biol. 2009;7:e1000125. doi: 10.1371/journal.pbio.1000125.
    1. Hannibal J., Christiansen A.T., Heegaard S., Fahrenkrug J., Kiilgaard J.F. Melanopsin-expressing human retinal ganglion cells: Subtypes, distribution, and intraretinal connectivity. J. Comp. Neurol. 2017;525:1934–1961. doi: 10.1002/cne.24181.
    1. Fernández-Robredo P., Sádaba L.M., Salinas-Alamán A., Recalde S., Rodríguez J.A., García-Layana A. Effect of lutein and antioxidant supplementation on VEGF expression, MMP-2 activity, and ultrastructural alterations in apolipoprotein E-deficient mouse. Oxid. Med. Cell. Longev. 2013;2013:213505. doi: 10.1155/2013/213505.
    1. Tian Y., Kijlstra A., van der Veen R.L., Makridaki M., Murray I.J., Berendschot T.T. The effect of lutein supplementation on blood plasma levels of complement factor D, C5a, and C3d. PLoS ONE. 2013;8:e73387. doi: 10.1371/journal.pone.0073387.
    1. Stringham N.T., Holmes P.V., Stringham J.M. Supplementation with macular carotenoids reduces psychological stress, serum cortisol, and suboptimal symptoms of physical and emotional health in young adults. Nutr. Neurosci. 2017;15:1–11. doi: 10.1080/1028415X.2017.1286445.
    1. Akerstedt T. Psychosocial stress and impaired sleep. Scand. J. Work Environ. Health. 2006;32:493–501. doi: 10.5271/sjweh.1054.
    1. Duncan G., Wormstone I.M., Davies P.D. The aging human lens: Structure, growth, and physiological behaviour. Br. J. Ophthalmol. 1997;81:818–823. doi: 10.1136/bjo.81.10.818.

Source: PubMed

Подписаться