Whole-genome array CGH evaluation for replacing prenatal karyotyping in Hong Kong

Anita S Y Kan, Elizabeth T Lau, W F Tang, Sario S Y Chan, Simon C K Ding, Kelvin Y K Chan, C P Lee, Pui Wah Hui, Brian H Y Chung, K Y Leung, Teresa Ma, Wing C Leung, Mary H Y Tang, Anita S Y Kan, Elizabeth T Lau, W F Tang, Sario S Y Chan, Simon C K Ding, Kelvin Y K Chan, C P Lee, Pui Wah Hui, Brian H Y Chung, K Y Leung, Teresa Ma, Wing C Leung, Mary H Y Tang

Abstract

Objective: To evaluate the effectiveness of whole-genome array comparative genomic hybridization (aCGH) in prenatal diagnosis in Hong Kong.

Methods: Array CGH was performed on 220 samples recruited prospectively as the first-tier test study. In addition 150 prenatal samples with abnormal fetal ultrasound findings found to have normal karyotypes were analyzed as a 'further-test' study using NimbleGen CGX-135K oligonucleotide arrays.

Results: Array CGH findings were concordant with conventional cytogenetic results with the exception of one case of triploidy. It was found in the first-tier test study that aCGH detected 20% (44/220) clinically significant copy number variants (CNV), of which 21 were common aneuploidies and 23 had other chromosomal imbalances. There were 3.2% (7/220) samples with CNVs detected by aCGH but not by conventional cytogenetics. In the 'further-test' study, the additional diagnostic yield of detecting chromosome imbalance was 6% (9/150). The overall detection for CNVs of unclear clinical significance was 2.7% (10/370) with 0.9% found to be de novo. Eleven loci of common CNVs were found in the local population.

Conclusion: Whole-genome aCGH offered a higher resolution diagnostic capacity than conventional karyotyping for prenatal diagnosis either as a first-tier test or as a 'further-test' for pregnancies with fetal ultrasound anomalies. We propose replacing conventional cytogenetics with aCGH for all pregnancies undergoing invasive diagnostic procedures after excluding common aneuploidies and triploidies by quantitative fluorescent PCR. Conventional cytogenetics can be reserved for visualization of clinically significant CNVs.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. A schematic diagram showing the…
Figure 1. A schematic diagram showing the indications for recruitment to the study and CNVs detected in the evaluation study.
The samples were subjected to first-tier test and ‘further-test’, with the clinical indications of testing and findings stated. aCGH, array CGH; CNVs, copy number variants; n, number of samples; DS +ve, Down syndrome screening positive; USS abn, ultrasound abnormality; Anxiety: maternal anxiety. Details on the clinically significant CNVs and CNVs of uncertain clinical significance are listed in Tables 1, 2, 3, 4, 5, 6.
Figure 2. Identical complex chromosomal rearrangements in…
Figure 2. Identical complex chromosomal rearrangements in chromosome 15 found in 2 prenatal samples with different karyotypes and phenotypes.
Sample A karyotype is 46,XY,15q+ dn (Table 3, Case no. 8); Sample B karyotype is 47,XX,+mar from characterization study. Each dot on the X-axis represents one oligonucleotide probe on the respective chromosome position. Two-copy gain is detected at 15q11.2q13.2 with minimum gain of 7.77 Mb. Single copy gain is detected at 15q13.2q13.3 with minimum gain of 1.3 Mb. No probe is located in the segment between the 2 regions of copy gains, therefore the exact number of copy gained is unknown in the segment. The genetic syndromes (red boxes) and genes (green boxes) in the region denoted by Signature Genomics Genoglyphix software are shown in the lower panel.
Figure 3. Proposed workflow for replacing karyotyping…
Figure 3. Proposed workflow for replacing karyotyping with aCGH in prenatal testing in Hong Kong.
Pregnancies with Down syndrome screening positive without ultrasound abnormalities can be subjected to non-invasive prenatal testing; while pregnancies with Down syndrome screening positive in the presence of ultrasound abnormalities can be subjected to invasive test by QF-PCR to exclude common aneuploidy and maternal contamination, followed by aCGH as shown. aCGH, array CGH; DS+ve, Down syndrome screening positive; FISH, fluorescent in-situ hybridization; NIPT, non-invasive prenatal testing; QF-PCR, quantitative fluorescent-polymerase chain reaction for common aneuploidy detection.

References

    1. Kirchhoff M, Rose H, Lundsteen C (2001) High resolution comparative genomic hybridisation in clinical cytogenetics. J Med Genet 38: 740–744.
    1. Mann K, Ogilvie CM (2012) QF-PCR: application, overview and review of the literature. Prenat Diagn 32: 309–314 10.1002/pd.2945
    1. Hills A, Donaghue C, Waters J, Waters K, Sullivan C, et al. (2010) QF-PCR as a stand-alone test for prenatal samples: the first 2 years' experience in the London region. Prenat Diagn 30: 509–517 10.1002/pd.2503
    1. Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, et al. (2010) Consensus statement: Chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 86: 749–764 10.1016/j.ajhg.2010.04.006
    1. Manning M, Hudgins L (2010) Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities. Genet Med 12: 742–745 10.1097/GIM.0b013e3181f8baad
    1. Hillman SC, Pretlove S, Coomarasamy A, McMullan DJ, Davison EV, et al. (2011) Additional information from array comparative genomic hybridization technology over conventional karyotyping in prenatal diagnosis: a systematic review and meta-analysis. Ultrasound Obstet Gynecol 37: 6–14 10.1002/uog.7754
    1. Hillman SC, McMullan DJ, Hall G, Togneri FS, James N, et al. (2013) Use of prenatal chromosomal microarray: prospective cohort study and systematic review and meta-analysis. Ultrasound Obstet Gynecol 41: 610–620 10.1002/uog.12464
    1. de Wit MC, Srebniak MI, Govaerts LC, Van Opstal D, Galjaard RJ, et al. (2013) The additional value of prenatal genomic array testing in fetuses with (isolated) structural ultrasound abnormalities and a normal karyotype: a systematic review of the literature. Ultrasound Obstet Gynecol 10.1002/uog.12575
    1. Wapner RJ, Martin CL, Levy B, Ballif BC, Eng CM, et al. (2012) Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med 367: 2175–2184 10.1056/NEJMoa1203382
    1. Callaway JL, Shaffer LG, Chitty LS, Rosenfeld JA, Crolla JA (2013) The clinical utility of microarray technologies applied to prenatal cytogenetics in the presence of a normal conventional karyotype: a review of the literature. Prenat Diagn 33: 1119–1123 10.1002/pd.4209
    1. Vetro A, Bouman K, Hastings R, McMullan DJ, Vermeesch JR, et al. (2012) The introduction of arrays in prenatal diagnosis: A special challenge. Hum Mutat 33: 923–929 10.1002/humu.22050
    1. Wapner RJ, Driscoll DA, Simpson JL (2012) Integration of microarray technology into prenatal diagnosis: counselling issues generated during the NICHD clinical trial. Prenat Diagn 32: 396–400 10.1002/pd.3863
    1. McGillivray G, Rosenfeld JA, McKinlay Gardner RJ, Gillam LH (2012) Genetic counselling and ethical issues with chromosome microarray analysis in prenatal testing. Prenat Diagn 32: 389–395 10.1002/pd.3849
    1. Lau ET, Tang L, Wong C, Yung Hang L, Ghosh A, et al. (2009) Assessing discrepant findings between QF-PCR on uncultured prenatal samples and karyotyping on long-term culture. Prenat Diagn 29: 151–155 10.1002/pd.2194
    1. Chong SS, Boehm CD, Higgs DR, Cutting GR (2000) Single-tube multiplex-PCR screen for common deletional determinants of alpha-thalasseamia. Blood 95: 360–362.
    1. Shek NWM, Tan TY, Ding CK, Chung BHY, Lau ETK, et al. (2013) Prenatal diagnosis of agenesis of the corpus callosum and cerebellar vermian hypoplasia associated with a microdeletion on chromosome 1p32. Case Rep in Perinat Med 2: 39–45 10.1515/crpm-20120032
    1. Scott F, Murphy K, Carey L, Greville W, Mansfield N, et al. (2013) Prenatal diagnosis using combined quantitative fluorescent polymerase chain reaction and array comparative genomic hybridization analysis as a first-line test: results from over 1000 consecutive cases. Ultrasound Obstet Gynecol 41: 500–507 10.1002/uog.12429
    1. Battaglia A (2008) The inv dup (15) or idic (15) syndrome (Tetrasomy 15q). Orphanet J Rare Dis 3: 30 10.1186/1750-1172-3-30
    1. Mignon-Ravix C, Depetris D, Luciani JJ, Cuoco C, Krajewska-Walasek M, et al. (2007) Recurrent rearrangements in the proximal 15q11-q14 region: a new breakpoint cluster specific to unbalanced translocations. Eur J Hum Genet 15: 432–440.
    1. Hogart A, Leung KN, Wang NJ, Wu DJ, Driscoll J, et al. (2009) Chromosome 15q11–13 duplication syndrome brain reveals epigenetic alterations in gene expression not predicted from copy number. J Med Genet 46: 86–93 10.1136/jmg.2008.061580
    1. Kou KO, Lee H, Lau B, Wong WS, Kan A, et al. (2013) Two unusual cases of haemoglobin Bart’s hydrops fetalis due to uniparental disomy or non-paternity. Fetal Diagn Ther 10.1159/00354808
    1. Lamb AN, Rosenfeld JA, Coppinger J, Dodge ET, Dabell MP, et al. (2012) Defining the impact of maternal cell contamination on the interpretation of prenatal microarray analysis. Genet Med 14(11): 914–21 10.1038/gim.2012.77
    1. Duncan A, Langlois S (2011) Use of array genomic hybridization technology in prenatal diagnosis in Canada. J Obstet Gynaecol Can 33: 1256–1259.
    1. Novelli A, Grati FR, Ballarati L, Bernardini L, Bizzoco D, et al. (2011) Microarray application in prenatal diagnosis: a position statement from the cytogenetics working group of the Italian Society of Human Genetics (SIGU), November 2011. Ultrasound Obstet Gynecol 39: 384–388 10.1002/uog.11092
    1. Fiorentino F, Napoletano S, Caiazo F, Sessa M, Bono S, et al. (2013) Chromosomal microarray analysis as a first-line test in pregnancies with a priori low risk for the detection of submicroscopic chromosomal abnormalities. Eur J Hum Genet 21: 725–730 10.1038/ejhg.2012.253
    1. American College of Obstetricians and Gynecologists (2013) Committee opinion no. 581: the use of chromosomal microarray analysis in prenatal diagnosis. Obstet Gynecol 122: 1374–1377 10.10971/01.AOG.0000438962.16108.d1

Source: PubMed

Подписаться