Oncologic Imaging of the Lymphatic System: Current Perspective with Multi-Modality Imaging and New Horizon

Mohamed Elshikh, Ahmed W Moawad, Usama Salem, Sergio P Klimkowski, Talaat Hassan, Brinda Rao Korivi, Corey T Jensen, Sanaz Javadi, Khaled M Elsayes, Mohamed Elshikh, Ahmed W Moawad, Usama Salem, Sergio P Klimkowski, Talaat Hassan, Brinda Rao Korivi, Corey T Jensen, Sanaz Javadi, Khaled M Elsayes

Abstract

The lymphatic system is an anatomically complex vascular network that is responsible for interstitial fluid homeostasis, transport of large interstitial particles and cells, immunity, and lipid absorption in the gastrointestinal tract. This network of specially adapted vessels and lymphoid tissue provides a major pathway for metastatic spread. Many malignancies produce vascular endothelial factors that induce tumoral and peritumoral lymphangiogenesis, increasing the likelihood for lymphatic spread. Radiologic evaluation for disease staging is the cornerstone of oncologic patient treatment and management. Multiple imaging modalities are available to access both local and distant metastasis. In this manuscript, we review the anatomy, physiology, and imaging of the lymphatic system.

Keywords: conventional lymphography; lymphangiography; lymphatic metastasis; lymphatic system anatomy; lymphatic system imaging; lymphatic system physiology; lymphoscintigraphy; magnetic resonance lymphangiography.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Diagrammatic illustration of the anatomy and physiology of the lymphatic system. (A) The blind end lymphatic capillaries that drain in the pre-collecting lymphatic vessels. Lymph is then transferred to the collecting lymphatic vessels and get filtered by the lymph nodes. All lymph from the human body ends in the systemic venous system through either the thoracic duct or right lymphatic duct. (B) The effect on increased interstitial pressure on the loose junctions between lymphatic endothelial cells, leading to increased transmission of the interstitial fluid and proteins to the lymphatic capillaries and pre-collecting lymphatic vessels (dashed arrows). “Created by BioRender.com. accessed on 10 August 2021”.
Figure 2
Figure 2
Diagrammatic illustration of the superficial inguinal lymph nodes anatomy. The superficial inguinal lymph nodes are inferior to the inguinal ligament and divided in five groups by the greater saphenous vein (GSV) and a horizontal line through the saphenofemoral junction (SFJ). The five groups are superior medial (1), superior lateral (2), inferior lateral (3), inferior medial (4), and central group that overlies the SFJ. FV: femoral vein. The inferolateral group receives most of the lymphatic drainage of the lower extremity. “Created by BioRender.com. accessed on 10 August 2021”.
Figure 3
Figure 3
Axial contrast-enhanced computed tomography of the right hemipelvis demonstrates the right external iliac artery and veins with associated lateral (1), middle (2), and medial (3) external iliac lymph nodes. “Created by BioRander.com. accessed on 10 August 2021”.
Figure 4
Figure 4
Axial contrast-enhanced computed tomography of the pelvis shows the anterior internal iliac lymph node group (1) that follows the course of the internal iliac artery anterior division, the lateral sacral lymph node group (2) that runs along the lateral sacral artery, and the presacral lymph nodes (3) that lies in the midline presacral region. “Created by BioRander.com. accessed on 10 August 2021”.
Figure 5
Figure 5
Axial contrast-enhanced CT of the upper pelvis at the level of the common iliac vessels shows the common iliac artery and vein. The lateral common iliac lymph node subgroup (1) is located lateral to the common iliac artery, while the medial subgroup (2) is medial to the common iliac artery. The middle subgroup (3) is in the lumbosacral fossa. “Created by BioRender.com. accessed on 10 August 2021”.
Figure 6
Figure 6
Axial contrast-enhanced CT of the abdomen (A) demonstrates the distribution of the peri-aortic lymph nodes: 1; pre-aortic, 2; left lateral aortic, 3; right lateral aortic, and 4; post-aortic. Sagittal contrast-enhanced CT of the abdomen (B) shows the distribution of the pre-aortic lymph nodes along the origins of the visceral branches of the aorta (celiac, superior mesenteric, and the inferior mesenteric arteries). “Created by BioRender.com. accessed on 10 August 2021”.
Figure 7
Figure 7
Diagrammatic illustration of the lymphatic drainage of the whole human body. The right upper extremity, right hemiface, and right hemithorax are drained by the right lymphatic duct (green-colored). The thoracic duct drains the rest of the human body.
Figure 8
Figure 8
Ultrasound of a benign-appearing cervical lymph node (A) shows an oval hypoechoic lymph node with echogenic fatty hilum (arrow). Color doppler ultrasound of another benign-appearing lymph node (B) demonstrates a fatty hilum (normal) with mild hilar vascularity (arrow).
Figure 9
Figure 9
Ultrasound of the right axilla (A) demonstrates multiple, round, and hypoechoic metastatic lymph nodes with S/L axis ratio of approximately 1 and lack of the echogenic fatty hilum. Color Doppler ultrasound of the axillary lymph (B) nodes shows peripheral vascularity (arrow).
Figure 10
Figure 10
Doppler ultrasound of a right inguinal metastatic lymph node in a 67-year-old male with history of right ankle melanoma shows an enlarged hypoechoic lymph node with mixed (hilar and peripheral) vascularity.
Figure 11
Figure 11
A 61-year-old female patient with history of gastric cancer. PET/CT scan demonstrates diffuse thickening of the gastro-esophageal region as well as the gastric cardia (arrow) (A) consistent with gastric carcinoma, which is FDG-avid (arrow) with maximum SUV = 11.6 (B). There is no focal abnormal metabolic activity to suggest distant metastatic spread or regional lymphadenopathy.
Figure 12
Figure 12
A 77-year-old male patient with gastric cancer. PET/CT scan demonstrates marked thickening of the gastric antrum with increased uptake (A,B) consistent with gastric carcinoma, maximum SUV = 8.7 (B). Enlarging metastatic adenopathy in the gastrohepatic ligament is also noted (C,D), not hypermetabolic on PET/CT.
Figure 13
Figure 13
Axial fused PET-CT (A) and non-contrast CT of the abdomen shows mildly enlarged right paraaortic lymph node with increased FDG avidity on PET-CT (SUVmax 5.7), (B) biopsy proven Hodgkin lymphoma.
Figure 14
Figure 14
A 65-year-old male patient with right lower lobe lung cancer. The pulmonary mass seen in (A) shows avid FDG uptake (SUV = 4.6) in (C). Right hilar and subcarinal lymph nodes show mild FDG uptake (SUV = 2.6), which was found later to be inflammatory due to chemotherapy, resolving on (B,D). This is an example of false positive uptake in nonmalignant tissue.
Figure 15
Figure 15
A 75-year-old female patient with abdominal leiomyosarcoma and chylous ascites. (A) Conventional lymphangiography was performed through the right pedal approach. The right inguinal lymphatic vessels are opacified (arrow) with subsequent opacification of the right pelvic lymphatic network (B,C). Noncontrast CT performed after lymphangiography shows ascending opacification of the lymphatic vessels and cisterna chyle (D). Estimated site of leakage appears from small lymphatic vessels in the left peri-aortic region at level of L3 (E).
Figure 16
Figure 16
A 39-year-old male patient who underwent surgical resection of esophageal leiomyoma complicated by persistent chylous effusion. Successful percutaneous fluoroscopic-guided thoracic duct embolization using embolization coils. (A) Bilateral conventional lymphangiography was done through inguinal lymph nodes (arrowheads) with lymphatic vessels opacification (arrow). (B) Subsequent opacification of the lymphatic network and deep lymph nodes (arrow). (C) After 81 min, opacification of the cisterna chyle occurred (arrow). (D) Deployment of 3 embolization coils (white arrow) in the thoracic duct proximal to the estimated site of leak (arrowhead—surgical clips from previous operations).
Figure 17
Figure 17
A 68-year-old male with melanoma in the right temporal region who underwent lymphoscintigraphy (A) and complementary SPECT/CT scan in the coronal plane (B); (C,D) show CT (left) and fused SPECT/CT images (right) for sentinel lymph nodes mapping. Intradermal injection of the TC99m sulfur colloid in the right temple (arrow in (B)) shows tracer uptake in the pre-auricular region (arrowhead in (C)) and intra-parotid region (arrowhead in (D)), consistent with sentinel lymph drainage.
Figure 18
Figure 18
A 76-year-old male patient with a history of tongue base cancer status post-chemoradiation and left upper extremity lympho-venous bypass due to swelling of his left arm. Lymphoscintigraphy was performed by injection of sulfur colloid (radiotracer) into both hands. (A) The patient position. (B) Right anterior scintigraphy position with accumulation of tracer in both hands and tracer uptake in the right arm (black arrow). (C,D) Fused SPECT/CT with transit of tracer via proximal arm LN (white arrow in (C)) to reach lymph nodes at right axilla (white arrow (D)) with absence of any tracer uptake in the whole left upper extremity, confirming normal lymphatic drainage of the right arm with lymphedema of the left arm.

References

    1. Al-Kofahi M., Yun J.W., Minagar A., Alexander J.S. Anatomy and roles of lymphatics in inflammatory diseases. Clin. Exp. Neuroimmunol. 2017;8:199–214. doi: 10.1111/cen3.12400.
    1. Scaglioni M.F., Suami H. Anatomy of the Lymphatic System and the Lymphosome Concept with Reference to Lymphedema. Semin. Plast. Surg. 2018;32:5–11. doi: 10.1055/s-0038-1635118.
    1. Hsu M.C., Itkin M. Lymphatic Anatomy. Tech. Vasc. Interv. Radiol. 2016;19:247–254. doi: 10.1053/j.tvir.2016.10.003.
    1. Tammela T., Alitalo K. Lymphangiogenesis: Molecular Mechanisms and Future Promise. Cell. 2010;140:460–476. doi: 10.1016/j.cell.2010.01.045.
    1. Dellinger M.T., Witte M.H. Lymphangiogenesis, lymphatic systemomics, and cancer: Context, advances and unanswered questions. Clin. Exp. Metastasis. 2018;35:419–424. doi: 10.1007/s10585-018-9907-9.
    1. Mandriota S.J., Jussila L., Jeltsch M., Compagni A., Baetens D., Prevo R., Banerji S., Huarte J., Montesano R., Jackson D.G., et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J. 2001;20:672–682. doi: 10.1093/emboj/20.4.672.
    1. Stacker S.A., Caesar C., Baldwin M.E., Thornton G.E., Williams R.A., Prevo R., Jackson D.G., Nishikawa S.-I., Kubo H., Achen M.G. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat. Med. 2001;7:186–191. doi: 10.1038/84635.
    1. Clément O., Luciani A. Imaging the lymphatic system: Possibilities and clinical applications. Eur. Radiol. 2004;14:1498–1507. doi: 10.1007/s00330-004-2265-9.
    1. Barrett T., Choyke P.L., Kobayashi H. Imaging of the lymphatic system: New horizons. Contrast Media Mol. Imaging. 2006;1:230–245. doi: 10.1002/cmmi.116.
    1. Munn L.L., Padera T.P. Imaging the lymphatic system. Microvasc. Res. 2014;96:55–63. doi: 10.1016/j.mvr.2014.06.006.
    1. Baluk P., Fuxe J., Hashizume H., Romano T., Lashnits E., Butz S., Vestweber D., Corada M., Molendini C., Dejana E., et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med. 2007;204:2349–2362. doi: 10.1084/jem.20062596.
    1. Schulte-Merker S., Sabine A., Petrova T.V. Lymphatic vascular morphogenesis in development, physiology, and disease. J. Cell Biol. 2011;193:607–618. doi: 10.1083/jcb.201012094.
    1. Shinaoka A., Koshimune S., Suami H., Yamada K., Kumagishi K., Boyages J., Kimata Y., Ohtsuka A. Lower-Limb Lymphatic Drainage Pathways and Lymph Nodes: A CT Lymphangiography Cadaver Study. Radiology. 2020;294:223–229. doi: 10.1148/radiol.2019191169.
    1. Yamazaki S., Suami H., Imanishi N., Aiso S., Yamada M., Jinzaki M., Kuribayashi S., Chang D.W., Kishi K. Three-dimensional demonstration of the lymphatic system in the lower extremities with multi-detector-row computed tomography: A study in a cadaver model. Clin. Anat. 2013;26:258–266. doi: 10.1002/ca.22179.
    1. McMahon C.J., Rofsky N.M., Pedrosa I. Lymphatic Metastases from Pelvic Tumors: Anatomic Classification, Characterization, and Staging. Radiology. 2010;254:31–46. doi: 10.1148/radiol.2541090361.
    1. Park J.M., Charnsangavej C., Yoshimitsu K., Herron D.H., Robinson T.J., Wallace S. Pathways of nodal metastasis from pelvic tumors: CT demonstration. Radiographics. 1994;14:1309–1321. doi: 10.1148/radiographics.14.6.7855343.
    1. Lengelé B., Nyssen-Behets C., Scalliet P. Anatomical bases for the radiological delineation of lymph node areas. Upper limbs, chest and abdomen. Radiother. Oncol. 2007;84:335–347. doi: 10.1016/j.radonc.2007.07.016.
    1. Chavhan G.B., Amaral J.G., Temple M., Itkin M. MR Lymphangiography in Children: Technique and Potential Applications. Radiographics. 2017;37:1775–1790. doi: 10.1148/rg.2017170014.
    1. Skobe M., Hawighorst T., Jackson D.G., Prevo R., Janes L., Velasco P., Riccardi L., Alitalo K., Claffey K., Detmar M. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat. Med. 2001;7:192–198. doi: 10.1038/84643.
    1. Prativadi R., Dahiya N., Kamaya A., Bhatt S. Chapter 5 Ultrasound Characteristics of Benign vs Malignant Cervical Lymph Nodes. Semin. Ultrasound CT MRI. 2017;38:506–515. doi: 10.1053/j.sult.2017.05.005.
    1. Wang B., Zhang M.K., Zhou M.P., Liu Y., Li N., Liu G., Wang Z.L. Logistic Regression Analysis of Conventional Ultrasound, and Contrast-Enhanced Ultrasound Characteristics. J. Ultrasound Med. 2021 doi: 10.1002/jum.15711.
    1. Dudea S.M., Lenghel M., Botar-Jid C., Vasilescu D., Duma M. Ultrasonography of superficial lymph nodes: Benign vs. malignant. Med. Ultrason. 2012;14:294–306.
    1. Vassallo P., Wernecke K., Roos N., E Peters P. Differentiation of benign from malignant superficial lymphadenopathy: The role of high-resolution US. Radiology. 1992;183:215–220. doi: 10.1148/radiology.183.1.1549675.
    1. Ahuja A., Ying M. Sonographic evaluation of cervical lymphadenopathy: Is power Doppler sonography routinely indicated? Ultrasound Med. Biol. 2003;29:353–359. doi: 10.1016/S0301-5629(02)00759-7.
    1. Ahuja A.T. Ultrasound of malignant cervical lymph nodes. Cancer Imaging. 2008;8:48–56. doi: 10.1102/1470-7330.2008.0006.
    1. Rubaltelli L., Khadivi Y., Tregnaghi A., Stramare R., Ferro F., Borsato S., Fiocco U., Adami F., Rossi C.R. Evaluation of lymph node perfusion using continuous mode harmonic ultrasonography with a second-generation contrast agent. J. Ultrasound Med. 2004;23:829–836. doi: 10.7863/jum.2004.23.6.829.
    1. Cui X.-W. New ultrasound techniques for lymph node evaluation. World J. Gastroenterol. 2013;19:4850–4860. doi: 10.3748/wjg.v19.i30.4850.
    1. Rubaltelli L., Beltrame V., Tregnaghi A., Scagliori E., Frigo A.C., Stramare R. Contrast-Enhanced Ultrasound for Characterizing Lymph Nodes With Focal Cortical Thickening in Patients With Cutaneous Melanoma. Am. J. Roentgenol. 2011;196:W8–W12. doi: 10.2214/AJR.10.4711.
    1. Wan C.F., Du J., Fang H., Li F.H., Zhu J.S., Liu Q. Enhancement Patterns and Parameters of Breast Cancers at Contrast-enhanced US: Correlation with Prognostic Factors. Radiology. 2012;262:450–459. doi: 10.1148/radiol.11110789.
    1. Yu M., Liu Q., Song H.-P., Han Z.-H., Su H.-L., He G.-B., Zhou X.-D. Clinical Application of Contrast-Enhanced Ultrasonography in Diagnosis of Superficial Lymphadenopathy. J. Ultrasound Med. 2010;29:735–740. doi: 10.7863/jum.2010.29.5.735.
    1. Ouyang Q., Chen L., Zhao H., Xu R., Lin Q. Detecting Metastasis of Lymph Nodes and Predicting Aggressiveness in Patients With Breast Carcinomas. J. Ultrasound Med. 2010;29:343–352. doi: 10.7863/jum.2010.29.3.343.
    1. Chen L., Chen L., Liu J., Wang B., Zhang H. Value of Qualitative and Quantitative Contrast-Enhanced Ultrasound Analysis in Preoperative Diagnosis of Cervical Lymph Node Metastasis From Papillary Thyroid Carcinoma. J. Ultrasound Med. 2020;39:73–81. doi: 10.1002/jum.15074.
    1. Nakase K., Yamamoto K., Hiasa A., Tawara I., Yamaguchi M., Shiku H. Contrast-enhanced ultrasound examination of lymph nodes in different types of lymphoma. Cancer Detect. Prev. 2006;30:188–191. doi: 10.1016/j.cdp.2006.03.005.
    1. Ahuja A.T., Ying M. Sonographic Evaluation of Cervical Lymph Nodes. Am. J. Roentgenol. 2005;184:1691–1699. doi: 10.2214/ajr.184.5.01841691.
    1. Luciani A., Itti E., Rahmouni A., Meignan M., Clement O. Lymph node imaging: Basic principles. Eur. J. Radiol. 2006;58:338–344. doi: 10.1016/j.ejrad.2005.12.038.
    1. Grey A., Carrington B., Hulse P., Swindell R., Yates W. Magnetic Resonance Appearance of Normal Inguinal Nodes. Clin. Radiol. 2000;55:124–130. doi: 10.1053/crad.1999.0330.
    1. Brown G., Richards C.J., Bourne M.W., Newcombe R.G., Radcliffe A.G., Dallimore N.S., Williams G.T. Morphologic Predictors of Lymph Node Status in Rectal Cancer with Use of High-Spatial-Resolution MR Imaging with Histopathologic Comparison. Radiology. 2003;227:371–377. doi: 10.1148/radiol.2272011747.
    1. Fukuda H., Nakagawa T., Shibuya H. Metastases to pelvic lymph nodes from carcinoma in the pelvic cavity: Diagnosis using thin-section CT. Clin. Radiol. 1999;54:237–242. doi: 10.1016/S0009-9260(99)91158-3.
    1. Oyen R.H., Van Poppel H.P., E Ameye F., A Van De Voorde W., Baert A.L., Baert L.V. Lymph node staging of localized prostatic carcinoma with CT and CT-guided fine-needle aspiration biopsy: Prospective study of 285 patients. Radiology. 1994;190:315–322. doi: 10.1148/radiology.190.2.8284375.
    1. Hilton S., Herr H.W., Teitcher J.B., Begg C.B., Castéllino R.A. CT detection of retroperitoneal lymph node metastases in patients with clinical stage I testicular nonseminomatous germ cell cancer: Assessment of size and distribution criteria. Am. J. Roentgenol. 1997;169:521–525. doi: 10.2214/ajr.169.2.9242768.
    1. Vinnicombe S., Norman A.R., Nicolson V., Husband J.E. Normal pelvic lymph nodes: Evaluation with CT after bipedal lymphangiography. Radiology. 1995;194:349–355. doi: 10.1148/radiology.194.2.7824709.
    1. Mittra E., Quon A. Positron Emission Tomography/Computed Tomography: The Current Technology and Applications. Radiol. Clin. N. Am. 2009;47:147–160. doi: 10.1016/j.rcl.2008.10.005.
    1. Vallabhajosula S. 18F-Labeled Positron Emission Tomographic Radiopharmaceuticals in Oncology: An Overview of Radiochemistry and Mechanisms of Tumor Localization. Semin. Nucl. Med. 2007;37:400–419. doi: 10.1053/j.semnuclmed.2007.08.004.
    1. Liu B., Gao S., Li S. A Comprehensive Comparison of CT, MRI, Positron Emission Tomography or Positron Emission Tomogra-phy/CT, and Diffusion Weighted Imaging-MRI for Detecting the Lymph Nodes Metastases in Patients with Cervical Cancer: A Me-ta-Analysis Based on 67 Studies. Gynecol. Obstet. Investig. 2017;82:209–222. doi: 10.1159/000456006.
    1. Choi H.J., Ju W., Myung S.-K., Kim Y. Diagnostic performance of computer tomography, magnetic resonance imaging, and positron emission tomography or positron emission tomography/computer tomography for detection of metastatic lymph nodes in patients with cervical cancer: Meta-analysis. Cancer Sci. 2010;101:1471–1479. doi: 10.1111/j.1349-7006.2010.01532.x.
    1. Riegger C., Koeninger A., Hartung V., Otterbach F., Kimmig R., Forsting M., Bockisch A., Antoch G., Heusner T.A. Comparison of the Diagnostic Value of FDG-PET/CT and Axillary Ultrasound for the Detection of Lymph Node Metastases in Breast Cancer Patients. Acta Radiol. 2012;53:1092–1098. doi: 10.1258/ar.2012.110635.
    1. Cochet A., Dygai-Cochet I., Riedinger J.-M., Humbert O., Berriolo-Riedinger A., Toubeau M., Guiu S., Coutant C., Coudert B., Fumoleau P., et al. 18F-FDG PET/CT provides powerful prognostic stratification in the primary staging of large breast cancer when compared with conventional explorations. Eur. J. Nucl. Med. Mol. Imaging. 2014;41:428–437. doi: 10.1007/s00259-013-2595-4.
    1. Itkin M., Kucharczuk J.C., Kwak A., Trerotola S.O., Kaiser L.R. Nonoperative thoracic duct embolization for traumatic thoracic duct leak: Experience in 109 patients. J. Thorac. Cardiovasc. Surg. 2010;139:584–590. doi: 10.1016/j.jtcvs.2009.11.025.
    1. Cope C., Kaiser L.R. Management of unremitting chylothorax by percutaneous embolization and blockage of retroperitoneal lym-phatic vessels in 42 patients. J. Vasc. Interv. Radiol. 2002;13:1139–1148. doi: 10.1016/S1051-0443(07)61956-3.
    1. Nadolski G.J., Itkin M. Feasibility of Ultrasound-guided Intranodal Lymphangiogram for Thoracic Duct Embolization. J. Vasc. Interv. Radiol. 2012;23:613–616. doi: 10.1016/j.jvir.2012.01.078.
    1. Rajebi M.R., Chaudry G., Padua H.M., Dillon B., Yilmaz S., Arnold R.W., Landrigan-Ossar M.F., Alomari A.I. Intranodal Lymphangiography: Feasibility and Preliminary Experience in Children. J. Vasc. Interv. Radiol. 2011;22:1300–1305. doi: 10.1016/j.jvir.2011.05.003.
    1. Von Eschenbach A.C., Jing B.S., Wallace S. Lymphangiography in genitourinary cancer. Urol. Clin. N. Am. 1985;12:715–723. doi: 10.1016/S0094-0143(21)01689-X.
    1. Litwin S.B., Fraley E.E., Clouse M.E., Ulfelder H. Lymphography in Patients with Pelvic Cancer. Obstet. Gynecol. 1964;24:809–816.
    1. Lang J.H. Lymphangiography in ovarian cancer. Zhonghua Fu Chan Ke Za Zhi. 1989;24:29–31.
    1. Baz A.A., Hassan T., Atta A., El Kholy M.S. Role of contrast enhanced MRI lymphangiography in evaluation of lower extremity lymphatic vessels for patients with primary lymphedema. Egypt. J. Radiol. Nucl. Med. 2018;49:776–781. doi: 10.1016/j.ejrnm.2018.06.005.
    1. Mazzei F.G., Gentili F., Guerrini S., Squitieri N.C., Guerrieri D., Gennaro P., Scialpi M., Volterrani L., Mazzei M.A. MR Lymphangiography: A Practical Guide to Perform It and a Brief Review of the Literature from a Technical Point of View. BioMed. Res. Int. 2017;2017:2598358. doi: 10.1155/2017/2598358.
    1. Derhy S., El Mouhadi S., Monnier-Cholley L., Menu Y., Becker C., Arrivé L. Noncontrast Magnetic Resonance Lymphography. J. Reconstr. Microsurg. 2015;32:80–86. doi: 10.1055/s-0035-1549133.
    1. Arrivé L., Derhy S., Dahan B., El Mouhadi S., Monnier-Cholley L., Menu Y., Becker C. Primary lower limb lymphoedema: Classification with non-contrast MR lymphography. Eur. Radiol. 2018;28:291–300. doi: 10.1007/s00330-017-4948-z.
    1. Bellin M.F., Lebleu L., Meric J.B. Evaluation of retroperitoneal and pelvic lymph node metastases with MRI and MR lymphan-giography. Abdom Imaging. 2003;28:155–163. doi: 10.1007/s00261-001-0182-9.
    1. Harisinghani M.G., Barentsz J., Hahn P.F., Deserno W.M., Tabatabaei S., Van De Kaa C.H., De La Rosette J., Weissleder R. Noninvasive Detection of Clinically Occult Lymph-Node Metastases in Prostate Cancer. N. Engl. J. Med. 2003;348:2491–2499. doi: 10.1056/NEJMoa022749.
    1. Weissleder R., Elizondo G., Wittenberg J., Rabito C.A., Bengele H.H., Josephson L. Ultrasmall superparamagnetic iron oxide: Characterization of a new class of contrast agents for MR imaging. Radiology. 1990;175:489–493. doi: 10.1148/radiology.175.2.2326474.
    1. Guimaraes R., Clement O., Bittoun J., Carnot F., Frija G. MR lymphography with superparamagnetic iron nanoparticles in rats: Pathologic basis for contrast enhancement. Am. J. Roentgenol. 1994;162:201–207. doi: 10.2214/ajr.162.1.8273666.
    1. Anzai Y., Blackwell K.E., Hirschowitz S.L., Rogers J.W., Sato Y., Yuh W.T., Runge V.M., Morris M.R., McLachlan S.J., Lufkin R.B. Initial clinical experience with dextran-coated superparamagnetic iron oxide for detection of lymph node metastases in patients with head and neck cancer. Radiology. 1994;192:709–715. doi: 10.1148/radiology.192.3.7520182.
    1. Pannu H.K., Wang K.-P., Borman T.L., Bluemke D.A. MR imaging of mediastinal lymph nodes: Evaluation using a superparamagnetic contrast agent. J. Magn. Reson. Imaging. 2000;12:899–904. doi: 10.1002/1522-2586(200012)12:6<899::AID-JMRI13>;2-R.
    1. Morton D.L., Wen D.-R., Wong J.H., Economou J.S., Cagle L.A., Storm F.K., Foshag L.J., Cochran A.J. Technical Details of Intraoperative Lymphatic Mapping for Early Stage Melanoma. Arch. Surg. 1992;127:392–399. doi: 10.1001/archsurg.1992.01420040034005.
    1. Morton D.L., Wen D.R., Foshag L.J., Essner R., Cochran A. Intraoperative lymphatic mapping and selective cervical lymphadenectomy for early-stage melanomas of the head and neck. J. Clin. Oncol. 1993;11:1751–1756. doi: 10.1200/JCO.1993.11.9.1751.
    1. Albertini J.J., Lyman G.H., Cox C., Yeatman T., Balducci L., Ku N., Shivers S., Berman C., Wells K., Rapaport D., et al. Lymphatic mapping and sentinel node biopsy in the patient with breast cancer. JAMA. 1996;276:1818–1822. doi: 10.1001/jama.1996.03540220042028.
    1. Intenzo C.M., Truluck C.A., Kushen M.C., Kim S.M., Berger A., Kairys J.C. Lymphoscintigraphy in Cutaneous Melanoma: An Updated Total Body Atlas of Sentinel Node Mapping. Radiographics. 2009;29:1125–1135. doi: 10.1148/rg.294085745.
    1. Uren R.F., Howman-Giles R., Chung D., Thompson J.F. Imaging Sentinel Lymph Nodes. Cancer J. 2015;21:25–32. doi: 10.1097/PPO.0000000000000092.
    1. Olmos R.A.V., Hoefnagel C.A., Nieweg O.E., Jansen L., Rutgers E.J., Borger J., Horenblas S., Kroon B.B. Lymphoscintigraphy in oncology: A rediscovered challenge. Eur. J. Nucl. Med. Mol. Imaging. 1999;26((Suppl. 4)):S2–S10. doi: 10.1007/s002590050571.
    1. Maza S., Valencia R., Geworski L., Sandrock D., Zander A., Audring H., Dräger E., Winter H., Sterry W., Munz D.L. Influence of fast lymphatic drainage on metastatic spread in cutaneous malignant melanoma: A prospective feasibility study. Eur. J. Nucl. Med. Mol. Imaging. 2003;30:538–544. doi: 10.1007/s00259-003-1114-4.
    1. Cammilleri S., Jacob T., Rojat-Habib M.C., Hesse S., Berthet B., Giorgi R., Bonerandi J.J., Mundler O. High negative predictive value of slow lymphatic drainage on metastatic node spread detection in malignant limb and trunk cutaneous melanoma. Bull Cancer. 2004;91:10225–10228.
    1. Fujiwara M., Sawada M., Kasuya A., Matsushita Y., Yamada M., Fukamizu H., Magata Y., Tokura Y., Sakahara H. Measurement of cutaneous lymphatic flow rates in patients with skin cancer: Area extraction method. J. Dermatol. 2014;41:498–504. doi: 10.1111/1346-8138.12506.
    1. Smith G., Thrams A., Voslar A. Impact of metastatic disease on transit time in sentinel node lymphoscintigraphy. J. Nucl. Med. 2021;62((Suppl. 1)):159.
    1. Collarino A., Fuoco V., Garganese G., Bouda L.M.P.A.-, Perotti G., Manca G., Vidal-Sicart S., Giammarile F., De Geus-Oei L.-F., Scambia G., et al. Lymphoscintigraphy and sentinel lymph node biopsy in vulvar carcinoma: Update from a European expert panel. Eur. J. Nucl. Med. Mol. Imaging. 2020;47:1261–1274. doi: 10.1007/s00259-019-04650-8.
    1. Skanjeti A., Dhomps A., Paschetta C., Tordo J., Bolton R.C.D., Giammarile F. Lymphoscintigraphy for Sentinel Node Mapping in Head and Neck Cancer. Semin. Nucl. Med. 2021;51:39–49. doi: 10.1053/j.semnuclmed.2020.07.004.
    1. Giammarile F., Bozkurt M.F., Cibula D., Pahisa J., Oyen W.J., Paredes P., Olmos R.V., Sicart S.V. The EANM clinical and technical guidelines for lymphoscintigraphy and sentinel node localization in gynaecological cancers. Eur. J. Nucl. Med. Mol. Imaging. 2014;41:1463–1477. doi: 10.1007/s00259-014-2732-8.
    1. Catarci M., Zaraca F., Angeloni R., Mancini B., de Filippo M.G., Massa R., Carboni M., Pasquini G. Preoperative lymphoscintigraphy and sentinel lymph node biopsy in papillary thyroid cancer. A pilot study. J. Surg. Oncol. 2001;77:21–24. doi: 10.1002/jso.1058.
    1. Wawroschek F., Vogt H., Wengenmair H., Weckermann D., Hamm M., Keil M., Graf G., Heidenreich P., Harzmann R. Prostate Lymphoscintigraphy and Radio-Guided Surgery for Sentinel Lymph Node Identification in Prostate Cancer. Urol. Int. 2003;70:303–310. doi: 10.1159/000070140.
    1. Bats A.-S., Frati A., Mathevet P., Orliaguet I., Querleu D., Zerdoud S., Leblanc E., Gauthier H., Uzan C., Deandreis D., et al. Contribution of lymphoscintigraphy to intraoperative sentinel lymph node detection in early cervical cancer: Analysis of the prospective multicenter SENTICOL cohort. Gynecol. Oncol. 2015;137:264–269. doi: 10.1016/j.ygyno.2015.02.018.
    1. Quartuccio N., Garau M.L., Arnone A., Pappalardo M., Rubello D., Arnone G., Manca G. Comparison of 99m TC-Labeled Colloid SPECT/CT and Planar Lymphoscintigraphy in Sentinel Lymph Node Detection in Patients with Melanoma: A Meta-Analysis. J. Clin. Med. 2020;9:1680. doi: 10.3390/jcm9061680.
    1. Kwak J.J., Kesner A.L., Gleisner A., Jensen A., Friedman C., McCarter M.D., Koo P.J., Morgan R., Kounalakis N. Utility of Quantitative SPECT/CT Lymphoscintigraphy in Guiding Sentinel Lymph Node Biopsy in Head and Neck Melanoma. Ann. Surg. Oncol. 2019;27:1432–1438. doi: 10.1245/s10434-019-08078-0.
    1. Chahid Y., Qiu X., van de Garde E.M.W., Verberne H.J., Booij J. Risk factors for nonvisualization of the sentinel lymph node on lymphoscintigraphy in breast cancer patients. EJNMMI Res. 2021;11:54. doi: 10.1186/s13550-021-00793-8.

Source: PubMed

Подписаться