Short intense psychological stress induced by skydiving does not impair intestinal barrier function

Maria Fernanda Roca Rubio, Ulrika Eriksson, Robert J Brummer, Julia König, Maria Fernanda Roca Rubio, Ulrika Eriksson, Robert J Brummer, Julia König

Abstract

Background and aim: Psychological stress has been shown to increase intestinal permeability and is associated with the development of gastrointestinal disorders. This study aimed to investigate skydiving as an alternative model to analyse the effect of acute psychological stress on intestinal barrier function.

Materials and methods: Twenty healthy subjects participated in a tandem skydive followed by a negative control visit, of which 19 (9 females and 10 males, 25.9 ± 3.7 years) were included in the study. Intestinal permeability was assessed by a multi-sugar urinary recovery test. Sucrose recovery and lactulose/rhamnose ratio in 0-5h urine indicated gastroduodenal and small intestinal permeability, respectively, and sucralose/erythritol ratio in 5-24h urine indicated colonic permeability. Blood samples were taken to assess markers associated with barrier function. This study has been registered at ClinicalTrials.gov (NCT03644979) on August 23, 2018.

Results: Skydiving resulted in a significant increase in salivary cortisol levels directly after skydiving compared to the control visit. Cortisol levels were still increased two hours after landing, while cortisol levels before skydiving were not significantly different from the baseline at the control visit. Skydiving did not induce a significant increase in gastroduodenal, small intestinal or colonic permeability. There was also no significant increase in plasma intestinal and liver fatty acid-binding proteins, suggesting no damage to the enterocytes.

Discussion: These results show that the acute intense psychological stress induced by skydiving does not affect intestinal permeability in healthy subjects. Future models aiming to investigate the effect of stress on human intestinal barrier function should consider a more sustained exposure to the psychological stressor.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Salivary cortisol concentrations during the…
Fig 1. Salivary cortisol concentrations during the test conditions.
Median and IQR are shown. p-values indicate significant differences between the two conditions. *p

Fig 2. Intestinal permeability at the different…

Fig 2. Intestinal permeability at the different test conditions.

(A) Gastroduodenal permeability measured by urinary…

Fig 2. Intestinal permeability at the different test conditions.
(A) Gastroduodenal permeability measured by urinary sucrose excretion (0-5h). (B) Small intestinal permeability measured by lactulose/rhamnose (L/R) ratio (0-5h). (C) Colonic permeability measured by urinary sucralose/erythritol (S/E) ratio (5h-24h). There was no significant difference among the test conditions.

Fig 3. Concentrations of other biomarkers of…

Fig 3. Concentrations of other biomarkers of intestinal barrier function at the different test conditions.

Fig 3. Concentrations of other biomarkers of intestinal barrier function at the different test conditions.
(A) Plasma concentrations of intestinal fatty acid-binding protein (I-FABP). (B) Plasma concentrations of liver fatty acid-binding protein (L-FABP). There was no significant difference among the test conditions. (C). (LBP). There was no significant difference among the test conditions.
Fig 2. Intestinal permeability at the different…
Fig 2. Intestinal permeability at the different test conditions.
(A) Gastroduodenal permeability measured by urinary sucrose excretion (0-5h). (B) Small intestinal permeability measured by lactulose/rhamnose (L/R) ratio (0-5h). (C) Colonic permeability measured by urinary sucralose/erythritol (S/E) ratio (5h-24h). There was no significant difference among the test conditions.
Fig 3. Concentrations of other biomarkers of…
Fig 3. Concentrations of other biomarkers of intestinal barrier function at the different test conditions.
(A) Plasma concentrations of intestinal fatty acid-binding protein (I-FABP). (B) Plasma concentrations of liver fatty acid-binding protein (L-FABP). There was no significant difference among the test conditions. (C). (LBP). There was no significant difference among the test conditions.

References

    1. König J, Wells J, Cani PD, Garcia-Rodenas CL, MacDonald T, Mercenier A, et al.. Human Intestinal Barrier Function in Health and Disease. Clin Transl Gastroenterol. 2016;7(10):e196. doi: 10.1038/ctg.2016.54 .
    1. Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke JD, Serino M, et al.. Intestinal permeability-a new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189. doi: 10.1186/s12876-014-0189-7 .
    1. Rodino-Janeiro BK, Alonso-Cotoner C, Pigrau M, Lobo B, Vicario M, Santos J. Role of Corticotropin-releasing Factor in Gastrointestinal Permeability. J Neurogastroenterol Motil. 2015;21(1):33–50. doi: 10.5056/jnm14084 .
    1. Vanuytsel T, van Wanrooy S, Vanheel H, Vanormelingen C, Verschueren S, Houben E, et al.. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut. 2014;63(8):1293–9. doi: 10.1136/gutjnl-2013-305690 .
    1. Farzi A, Frohlich EE, Holzer P. Gut Microbiota and the Neuroendocrine System. Neurotherapeutics. 2018;15(1):5–22. doi: 10.1007/s13311-017-0600-5 .
    1. Fichna J, Storr MA. Brain-Gut Interactions in IBS. Front Pharmacol. 2012;3:127. doi: 10.3389/fphar.2012.00127 .
    1. Wallon C, Yang PC, Keita AV, Ericson AC, McKay DM, Sherman PM, et al.. Corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro. Gut. 2008;57(1):50–8. doi: 10.1136/gut.2006.117549 .
    1. Overman EL, Rivier JE, Moeser AJ. CRF induces intestinal epithelial barrier injury via the release of mast cell proteases and TNF-alpha. PLoS One. 2012;7(6):e39935. doi: 10.1371/journal.pone.0039935 .
    1. König J, Ganda-Mall JP, Rangel I, Edebol H, Brummer RJ. The Role of the Gut Microbiota in Brain Function. In: Carmo KVaAPd, editor. Probiotics and Prebiotics: Current Research and Future Trends. Beneficial Microbes Consultancy, 6709 TN Wageningen NL, The Netheralnds and Instituto Federal do Espírito Santo, Soteco, Vila Velha ES, Brazil (respectively): Caister Academic Press; 2015. p. 381–90.
    1. Saunders PR, Santos J, Hanssen NP, Yates D, Groot JA, Perdue MH. Physical and psychological stress in rats enhances colonic epithelial permeability via peripheral CRH. Dig Dis Sci. 2002;47(1):208–15. doi: 10.1023/a:1013204612762 .
    1. Alonso C, Guilarte M, Vicario M, Ramos L, Rezzi S, Martinez C, et al.. Acute experimental stress evokes a differential gender-determined increase in human intestinal macromolecular permeability. Neurogastroent Motil. 2012;24(8):740–e349. doi: 10.1111/j.1365-2982.2012.01928.x .
    1. Li X, Kan EM, Lu J, Cao Y, Wong RK, Keshavarzian A, et al.. Combat-training increases intestinal permeability, immune activation and gastrointestinal symptoms in soldiers. Aliment Pharmacol Ther. 2013;37(8):799–809. doi: 10.1111/apt.12269 .
    1. Brazaitis M, Eimantas N, Daniuseviciute L, Mickeviciene D, Steponaviciute R, Skurvydas A. Two Strategies for Response to 14 degrees C Cold-Water Immersion: Is there a Difference in the Response of Motor, Cognitive, Immune and Stress Markers? Plos One. 2014;12(10). doi: 10.1371/journal.pone.0109020 .
    1. Solianik R, Skurvydas A, Vitkauskiene A, Brazaitis M. Gender-specific cold responses induce a similar body-cooling rate but different neuroendocrine and immune responses. Cryobiology. 2014;69(1):26–33. doi: 10.1016/j.cryobiol.2014.04.015 .
    1. McRae AL, Saladin ME, Brady KT, Upadhyaya H, Back SE, Timmerman MA. Stress reactivity: biological and subjective responses to the cold pressor and Trier Social stressors. Hum Psychopharm Clin. 2006;21(6):377–85. doi: 10.1002/hup.778 .
    1. Pals KL, Chang RT, Ryan AJ, Gisolfi CV. Effect of running intensity on intestinal permeability. J Appl Physiol (1985). 1997;82(2):571–6. doi: 10.1152/jappl.1997.82.2.571 .
    1. Messina G, AValenzano A, Moscatelli F, I Triggiani A, Capranica L, Messina A, et al.. Effects of Emotional Stress on Neuroendocrine and Autonomic Functions in Skidiving. Journal of Psychiatry. 2015;18(4):1000280. doi: 10.3389/fnhum.2015.00138 .
    1. Meyer VJ, Lee Y, Bottger C, Leonbacher U, Allison AL, Shirtcliff EA. Experience, cortisol reactivity, and the coordination of emotional responses to skydiving. Front Hum Neurosci. 2015;9:138. doi: 10.3389/fnhum.2015.00138 .
    1. Hare OA, Wetherell MA, Smith MA. State anxiety and cortisol reactivity to skydiving in novice versus experienced skydivers. Physiol Behav. 2013;118:40–4. doi: 10.1016/j.physbeh.2013.05.011 .
    1. van Wijck K, Verlinden TJ, van Eijk HM, Dekker J, Buurman WA, Dejong CH, et al.. Novel multi-sugar assay for site-specific gastrointestinal permeability analysis: a randomized controlled crossover trial. Clin Nutr. 2013;32(2):245–51. doi: 10.1016/j.clnu.2012.06.014 .
    1. Wells JM, Brummer RJ, Derrien M, MacDonald TT, Troost F, Cani PD, et al.. Homeostasis of the Gut Barrier and Potential Biomarkers. Am J Physiol Gastrointest Liver Physiol. 2016:G171–G93. doi: 10.1152/ajpgi.00048.2015 .
    1. Mujagic Z, Ludidi S, Keszthelyi D, Hesselink MAM, Kruimel JW, Lenaerts K, et al.. Small intestinal permeability is increased in diarrhoea predominant IBS, while alterations in gastroduodenal permeability in all IBS subtypes are largely attributable to confounders. Aliment Pharm Ther. 2014;40(3):288–97. doi: 10.1111/apt.12829 .
    1. Sequeira IR, Lentle RG, Kruger MC, Hurst RD. Standardising the lactulose mannitol test of gut permeability to minimise error and promote comparability. PLoS One. 2014;9(6):e99256. doi: 10.1371/journal.pone.0099256 .
    1. Chatterton RT Jr., Vogelsong KM, Lu YC, Hudgens GA. Hormonal responses to psychological stress in men preparing for skydiving. J Clin Endocrinol Metab. 1997;82(8):2503–9. doi: 10.1210/jcem.82.8.4133 .
    1. Schedlowski M, Tewes U. Physiological Arousal and Perception of bodily State During Parachute Jumping. Psychophysiology. 1992;29(1):95–103. doi: 10.1111/j.1469-8986.1992.tb02020.x .
    1. Yonelinas AP, Parks CM, Koen JD, Jorgenson J, Mendoza SP. The effects of post-encoding stress on recognition memory: examining the impact of skydiving in young men and women. Stress. 2011;14(2):136–44. doi: 10.3109/10253890.2010.520376 .
    1. Fer C, Guiavarch M, Edouard P. Epidemiology of skydiving-related deaths and injuries: A 10-years prospective study of 6.2 million jumps between 2010 and 2019 in France. J Sci Med Sport. 2021;24(5):448–53. doi: 10.1016/j.jsams.2020.11.002 .
    1. Schoultz I, Keita AV. The Intestinal Barrier and Current Techniques for the Assessment of Gut Permeability. Cells. 2020;9(8). doi: 10.3390/cells9081909 .
    1. Thuijls G, van Wijck K, Grootjans J, Derikx JP, van Bijnen AA, Heineman E, et al.. Early diagnosis of intestinal ischemia using urinary and plasma fatty acid binding proteins. Ann Surg. 2011;253(2):303–8. doi: 10.1097/SLA.0b013e318207a767
    1. Pelsers MMAL, Namiot Z, Kisielewski W, Namiot A, Januszkiewicz M, Hermens WT, et al.. Intestinal-type and liver-type fatty acid-binding protein in the intestine. Tissue distribution and clinical utility. Clin Biochem. 2003;36(7):529–35. doi: 10.1016/s0009-9120(03)00096-1 .
    1. Guthmann F, Borchers T, Wolfrum C, Wustrack T, Bartholomaus S, Spener F. Plasma concentration of intestinal- and liver-FABP in neonates suffering from necrotizing enterocolitis and in healthy preterm neonates. Mol Cell Biochem. 2002;239(1–2):227–34. .
    1. Tobias PS, Mathison J, Mintz D, Lee JD, Kravchenko V, Kato K, et al.. Participation of lipopolysaccharide-binding protein in lipopolysaccharide-dependent macrophage activation. Am J Respir Cell Mol Biol. 1992;7(3):239–45. doi: 10.1165/ajrcmb/7.3.239 .
    1. Ogden HB, Fallowfield JL, Child RB, Davison G, Fleming SC, Edinburgh RM, et al.. Reliability of gastrointestinal barrier integrity and microbial translocation biomarkers at rest and following exertional heat stress. Physiological Reports. 2020;8(5). doi: 10.14814/phy2.14374 .
    1. Hansen AM, Garde AH, Persson R. Sources of biological and methodological variation in salivary cortisol and their impact on measurement among healthy adults: A review. Scand J Clin Lab Inv. 2008;68(6):448–58. doi: 10.1080/00365510701819127 .
    1. Edwards S, Evans P, Hucklebridge F, Clow A. Association between time of awakening and diurnal cortisol secretory activity. Psychoneuroendocrino. 2001;26(6):613–22. doi: 10.1016/s0306-4530(01)00015-4 .
    1. Kirschbaum C, Hellhammer DH. Salivary Cortisol in Psychoneuroendocrine Research—Recent Developments and Applications. Psychoneuroendocrino. 1994;19(4):313–33. doi: 10.1016/0306-4530(94)90013-2 .
    1. Miller R, Plessow F, Kirschbaum C, Stalder T. Classification criteria for distinguishing cortisol responders from nonresponders to psychosocial stress: evaluation of salivary cortisol pulse detection in panel designs. Psychosom Med. 2013;75(9):832–40. doi: 10.1097/PSY.0000000000000002 .
    1. Kirschbaum C, Hellhammer DH. Salivary cortisol in psychobiological research: an overview. Neuropsychobiology. 1989;22(3):150–69. doi: 10.1159/000118611 .
    1. Darwich AS, Aslam U, Ashcroft DM, Rostami-Hodjegan A. Meta-analysis of the turnover of intestinal epithelia in preclinical animal species and humans. Drug Metab Dispos. 2014;42(12):2016–22. doi: 10.1124/dmd.114.058404 .
    1. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al.. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262–U147. doi: 10.1038/nature07935 .
    1. Ganda Mall JP, Fart F, Sabet JA, Lindqvist CM, Nestestog R, Hegge FT, et al.. Effects of Dietary Fibres on Acute Indomethacin-Induced Intestinal Hyperpermeability in the Elderly: A Randomised Placebo Controlled Parallel Clinical Trial. Nutrients. 2020;12(7):1954. doi: 10.3390/nu12071954 .
    1. van Wijck K, Lenaerts K, van Loon LJ, Peters WH, Buurman WA, Dejong CH. Exercise-induced splanchnic hypoperfusion results in gut dysfunction in healthy men. PLoS One. 2011;6(7):e22366. doi: 10.1371/journal.pone.0022366 .
    1. Adam EK, Kumari M. Assessing salivary cortisol in large-scale, epidemiological research. Psychoneuroendocrino. 2009;34(10):1423–36. doi: 10.1016/j.psyneuen.2009.06.011 .
    1. Pruessner JC, Wolf OT, Hellhammer DH, Buske-Kirschbaum A, von Auer K, Jobst S, et al.. Free cortisol levels after awakening: a reliable biological marker for the assessment of adrenocortical activity. Life Sci. 1997;61(26):2539–49. doi: 10.1016/s0024-3205(97)01008-4 .

Source: PubMed

Подписаться