Effect of whey supplementation on circulating C-reactive protein: a meta-analysis of randomized controlled trials

Ling-Mei Zhou, Jia-Ying Xu, Chun-Ping Rao, Shufen Han, Zhongxiao Wan, Li-Qiang Qin, Ling-Mei Zhou, Jia-Ying Xu, Chun-Ping Rao, Shufen Han, Zhongxiao Wan, Li-Qiang Qin

Abstract

Whey supplementation is beneficial for human health, possibly by reducing the circulating C-reactive protein (CRP) level, a sensitive marker of inflammation. Thus, a meta-analysis of randomized controlled trials was conducted to evaluate their relationship. A systematic literature search was conducted in July, 2014, to identify eligible studies. Either a fixed-effects model or a random-effects model was used to calculate pooled effects. The meta-analysis results of nine trials showed a slight, but no significant, reduction of 0.42 mg/L (95% CI -0.96, 0.13) in CRP level with the supplementation of whey protein and its derivates. Relatively high heterogeneity across studies was observed. Subgroup analyses showed that whey significantly lowered CRP by 0.72 mg/L (95% CI -0.97, -0.47) among trials with a daily whey dose≥20 g/day and by 0.67 mg/L (95% CI -1.21, -0.14) among trials with baseline CRP≥3 mg/L. Meta-regression analysis revealed that the baseline CRP level was a potential effect modifier of whey supplementation in reducing CRP. In conclusion, our meta-analysis did not find sufficient evidence that whey and its derivates elicited a beneficial effect in reducing circulating CRP. However, they may significantly reduce CRP among participants with highly supplemental doses or increased baseline CRP levels.

Figures

Figure 1
Figure 1
Flow chart of study selection.
Figure 2
Figure 2
Meta-analysis of the effect of whey supplementation on circulating CRP level as compared with the control. WMD, weighted mean difference.

References

    1. Sousa G.T., Lira F.S., Rosa J.C., de Oliveira E.P., Oyama L.M., Santos R.V., Pimentel G.D. Dietary whey protein lessens several risk factors for metabolic diseases: A review. Lipids Health Dis. 2012;11:67. doi: 10.1186/1476-511X-11-67.
    1. Tong X., Li W., Xu J.Y., Han S., Qin L.Q. Effects of whey protein and leucine supplementation on insulin sensitivity in non-obese insulin-resistant model rats. Nutrition. 2014;30:1076–1080. doi: 10.1016/j.nut.2014.01.013.
    1. Qin L.Q., Xu J.Y., Dong J.Y., Zhao Y., van Bladeren P., Zhang W. Lactotripeptides intake and blood pressure management: A meta-analysis of randomized controlled clinical trials. Nutr. Metab. Cardiovasc. Dis. 2013;23:395–402. doi: 10.1016/j.numecd.2013.02.006.
    1. Broekhuizen R., Wouters E.F., Creutzberg E.C., Schols A.M. Raised CRP levels mark metabolic and functional impairment in advanced COPD. Thorax. 2006;61:17–22. doi: 10.1136/thx.2005.041996.
    1. Ridker P.M. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation. 2003;107:363–369. doi: 10.1161/01.CIR.0000053730.47739.3C.
    1. Androulakis E., Tousoulis D., Papageorgiou N., Latsios G., Siasos G., Tsioufis C., Giolis A., Stefanadis C. Inflammation in hypertension: Current therapeutic approaches. Curr. Pharm. Des. 2011;17:4121–4131. doi: 10.2174/138161211798764753.
    1. Donath M.Y. Targeting inflammation in the treatment of type 2 diabetes: Time to start. Nat. Rev. Drug Discov. 2014;13:465–476. doi: 10.1038/nrd4275.
    1. Moher D., Liberati A., Tetzlaff J., Altman D.G. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009;151:264–269. doi: 10.7326/0003-4819-151-4-200908180-00135.
    1. Jadad A.R., Moore R.A., Carroll D., Jenkinson C., Reynolds D.J., Gavaghan D.J., McQuay H.J. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Control Clin. Trials. 1996;17:1–12. doi: 10.1016/0197-2456(95)00134-4.
    1. Higgins J., Green S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. The Cochrane Collaboration. [(accessed on 20 June 2014)]. Available online: .
    1. Follmann D., Elliott P., Suh I., Cutler J. Variance imputation for overviews of clinical trials with continuous response. J. Clin. Epidemiol. 1992;45:769–773. doi: 10.1016/0895-4356(92)90054-Q.
    1. Higgins J.P., Thompson S.G., Deeks J.J., Altman D.G. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–560. doi: 10.1136/bmj.327.7414.557.
    1. DerSimonian R., Laird N.P. Meta-analysis in clinical trials. Control Clin. Trials. 1986;7:177–188. doi: 10.1016/0197-2456(86)90046-2.
    1. Egger M., Davey Smith G., Schneider M., Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–634. doi: 10.1136/bmj.315.7109.629.
    1. Duff W.R., Chilibeck P.D., Rooke J.J., Kaviani M., Krentz J.R., Haines D.M. The effect of bovine colostrum supplementation in older adults during resistance training. Int. J. Sport Nutr. Exerc. Metab. 2014;24:276–285. doi: 10.1123/ijsnem.2013-0182.
    1. Gouni-Berthold I., Schulte D.M., Krone W., Lapointe J.F., Lemieux P., Predel H.G., Berthold H.K. The whey fermentation product malleable protein matrix decreases TAG concentrations in patients with the metabolic syndrome: A randomized placebo-controlled trial. Br. J. Nutr. 2012;107:1694–1706. doi: 10.1017/S0007114511004843.
    1. Petyaev I.M., Dovgalevsky P.Y., Klochkov V.A., Chalyk N.E., Kyle N. Whey protein lycosome formulation improves vascular functions and plasma lipids with reduction of markers of inflammation and oxidative stress in prehypertension. Sci. World J. 2012;2012 doi: 10.1100/2012/269476.
    1. Sugawara K., Takahashi H., Kashiwagura T., Yamada K., Yanagida S., Homma M., Dairiki K., Sasaki H., Kawagoshi A., Satake M., et al. Effect of anti-inflammatory supplementation with whey peptide and exercise therapy in patients with COPD. Respir. Med. 2012;106:1526–1534. doi: 10.1016/j.rmed.2012.07.001.
    1. Weinheimer E.M., Conley T.B., Kobza V.M., Sands L.P., Lim E., Janle E.M., Campbell W.W. Whey protein supplementation does not affect exercise training-induced changes in body composition and indices of metabolic syndrome in middle-aged overweight and obese adults. J. Nutr. 2012;142:1532–1539. doi: 10.3945/jn.111.153619.
    1. Laviolette L., Lands L.C., Dauletbaev N., Saey D., Milot J., Provencher S., LeBlanc P., Maltais F. Combined effect of dietary supplementation with pressurized whey and exercise training in chronic obstructive pulmonary disease: A randomized, controlled, double-blind pilot study. J. Med. Food. 2010;13:589–598. doi: 10.1089/jmf.2009.0142.
    1. Pal S., Ellis V. The chronic effects of whey proteins on blood pressure, vascular function, and inflammatory markers in overweight individuals. Obesity. 2010;18:1354–1359. doi: 10.1038/oby.2009.397.
    1. Lee Y.M., Skurk T., Hennig M., Hauner H. Effect of a milk drink supplemented with whey peptides on blood pressure in patients with mild hypertension. Eur. J. Nutr. 2007;46:21–27. doi: 10.1007/s00394-006-0625-8.
    1. Pins J.J., Keenan J.M. Effects of whey peptides on cardiovascular disease risk factors. J. Clin. Hypertens. 2006;8:775–782. doi: 10.1111/j.1524-6175.2006.05667.x.
    1. Wang C., Yatsuya H., Tamakoshi K., Uemura M., Li Y., Wada K., Yamashita K., Kawaguchi L., Toyoshima H., Aoyama A. Positive association between high-sensitivity C-reactive protein and incidence of type 2 diabetes mellitus in Japanese workers: 6-year follow-up. Diabetes Metab. Res. Rev. 2013;29:398–405. doi: 10.1002/dmrr.2406.
    1. Choi J.L., Joseph L., Pilote L. Obesity and C-reactive protein in various populations: A systematic review and meta-analysis. Obes. Rev. 2013;14:232–244. doi: 10.1111/obr.12003.
    1. Buyken A.E., Goletzke J., Joslowski G., Felbick A., Cheng G., Herder C., Brand-Miller J.C. Association between carbohydrate quality and inflammatory markers: Systematic review of observational and interventional studies. Am. J. Clin. Nutr. 2014;99:813–833. doi: 10.3945/ajcn.113.074252.
    1. Zhou H., Li Y., Huang G., Gu X., Zeng J., Li Y., Luo C., Ou B., Zhang Y., Wu Z., et al. Interleukin 6 augments mechanical strain-induced C-reactive protein synthesis via the stretch-activated channel-nuclear factor κB signal pathway. Heart. 2013;99:570–576. doi: 10.1136/heartjnl-2012-303355.
    1. Skurk T., van Harmelen V., Hauner H. Angiotensin II stimulates the release of interleukin-6 and interleukin-8 from cultured human adipocytes by activation of NF-κB. Arterioscler Thromb. Vasc. Biol. 2004;24:1199–1203. doi: 10.1161/01.ATV.0000131266.38312.2e.
    1. Xiao Y., Haynes W.L., Michalek J.E., Russell I.J. Elevated serum high- sensitivity C-reactive protein levels in fibromyalgia syndrome patients correlate with body mass index, interleukin-6, interleukin-8, erythrocyte sedimentation rate. Rheumatol. Int. 2013;33:1259–1264. doi: 10.1007/s00296-012-2538-6.
    1. Comassi M., Vitolo E., Pratali L., Del Turco S., Dellanoce C., Rossi C., Santini E., Solini A. Acute effects of different degrees of ultra-endurance exercise on systemic inflammatory responses. Intern. Med. J. 2014 doi: 10.1111/imj.12625.
    1. Kerasioti E., Stagos D., Jamurtas A., Kiskini A., Koutedakis Y., Goutzourelas N., Pournaras S., Tsatsakis A.M., Kouretas D. Anti-inflammatory effects of a special carbohydrate-whey protein cake after exhaustive cycling in humans. Food Chem. Toxicol. 2013;61:42–46. doi: 10.1016/j.fct.2013.01.023.
    1. Lands L.C., Iskandar M., Beaudoin N., Meehan B., Dauletbaev N., Berthiuame Y. Dietary supplementation with pressurized whey in patients with cystic fibrosis. J. Med. Food. 2010;13:77–82. doi: 10.1089/jmf.2008.0326.
    1. Bondia-Pons I., Ryan L., Martinez J.A. Oxidative stress and inflammation interactions in human obesity. J. Physiol. Biochem. 2012;68:701–711. doi: 10.1007/s13105-012-0154-2.
    1. Marshall K. Therapeutic applications of whey protein. Altern. Med. Rev. 2004;9:136–156.
    1. Zavorsky G.S., Kubow S., Grey V., Riverin V., Lands L.C. An open-label dose-response study of lymphocyte glutathione levels in healthy men and women receiving pressurized whey protein isolate supplements. Int. J. Food. Sci. Nutr. 2007;58:429–436. doi: 10.1080/09637480701253581.
    1. Kerasioti E., Stagos D., Priftis A., Aivazidis S., Tsatsakis A.M., Kouretas D. Antioxidant effects of whey protein on muscle C2C12 cells. Food Chem. 2014;155:271–278. doi: 10.1016/j.foodchem.2014.01.066.
    1. Zemel M.B., Bruckbauer A. Effects of a leucine and pyridoxine-containing nutraceutical on fat oxidation, and oxidative and inflammatory stress in overweight and obese subjects. Nutrients. 2012;4:529–541. doi: 10.3390/nu4060529.
    1. Ricci-Cabello I., Herrera M.O., Artacho R. Possible role of milk-derived bioactive peptides in the treatment and prevention of metabolic syndrome. Nutr. Rev. 2012;70:241–255. doi: 10.1111/j.1753-4887.2011.00448.x.
    1. Aihara K., Osaka M., Yoshida M. Oral administration of milk casein-derived tripeptides Val-Pro-Pro attenuates high-fat diet-induced adipose tissue inflammation in mice. Br. J. Nutr. 2014;112:513–519. doi: 10.1017/S0007114514001147.
    1. Hirota T., Ohki K., Kawagishi R., Kajimoto Y., Mizuno S., Nakamura Y., Kitakaze M. Casein hydrolysate containing the antihypertensive tripeptides Val-Pro-Pro and Ile-Pro-Pro improves vascular endothelial function independent of blood pressure-lowering effects: Contribution of the inhibitory action of angiotensin-converting enzyme. Hypertens. Res. 2007;30:489–496. doi: 10.1291/hypres.30.489.
    1. Arnberg K., Larnkjar A., Michaelsen K.F., Jensen S.M., Hoppe C., Molgaard C. Casein improves brachial and central aortic diastolic blood pressure in overweight adolescents: A randomized, controlled trial. J. Nutr. Sci. 2013;2:1–10. doi: 10.1017/jns.2013.29.

Source: PubMed

Подписаться