A randomized trial of supplemental parenteral nutrition in underweight and overweight critically ill patients: the TOP-UP pilot trial

Paul E Wischmeyer, Michel Hasselmann, Christine Kummerlen, Rosemary Kozar, Demetrios James Kutsogiannis, Constantine J Karvellas, Beth Besecker, David K Evans, Jean-Charles Preiser, Leah Gramlich, Khursheed Jeejeebhoy, Rupinder Dhaliwal, Xuran Jiang, Andrew G Day, Daren K Heyland, Paul E Wischmeyer, Michel Hasselmann, Christine Kummerlen, Rosemary Kozar, Demetrios James Kutsogiannis, Constantine J Karvellas, Beth Besecker, David K Evans, Jean-Charles Preiser, Leah Gramlich, Khursheed Jeejeebhoy, Rupinder Dhaliwal, Xuran Jiang, Andrew G Day, Daren K Heyland

Abstract

Background: Nutrition guidelines recommendations differ on the use of parenteral nutrition (PN), and existing clinical trial data are inconclusive. Our recent observational data show that amounts of energy/protein received early in the intensive care unit (ICU) affect patient mortality, particularly for inadequate nutrition intake in patients with body mass indices (BMIs) of <25 or >35. Thus, we hypothesized increased nutrition delivery via supplemental PN (SPN) + enteral nutrition (EN) to underweight and obese ICU patients would improve 60-day survival and quality of life (QoL) versus usual care (EN alone).

Methods: In this multicenter, randomized, controlled pilot trial completed in 11 centers across four countries, adult ICU patients with acute respiratory failure expected to require mechanical ventilation for >72 hours and with a BMI of <25 or ≥35 were randomized to receive EN alone or SPN + EN to reach 100% of their prescribed nutrition goal for 7 days after randomization. The primary aim of this pilot trial was to achieve a 30% improvement in nutrition delivery.

Results: In total, 125 patients were enrolled. Over the first 7 post-randomization ICU days, patients in the SPN + EN arm had a 26% increase in delivered calories and protein, whereas patients in the EN-alone arm had a 22% increase (both p < 0.001). Surgical ICU patients received poorer EN nutrition delivery and had a significantly greater increase in calorie and protein delivery when receiving SPN versus medical ICU patients. SPN proved feasible to deliver with our prescribed protocol. In this pilot trial, no significant outcome differences were observed between groups, including no difference in infection risk. Potential, although statistically insignificant, trends of reduced hospital mortality and improved discharge functional outcomes and QoL outcomes in the SPN + EN group versus the EN-alone group were observed.

Conclusions: Provision of SPN + EN significantly increased calorie/protein delivery over the first week of ICU residence versus EN alone. This was achieved with no increased infection risk. Given feasibility and consistent encouraging trends in hospital mortality, QoL, and functional endpoints, a full-scale trial of SPN powered to assess these clinical outcome endpoints in high-nutritional-risk ICU patients is indicated-potentially focusing on the more poorly EN-fed surgical ICU setting.

Trial registration: NCT01206166.

Keywords: Calorie delivery; Critical care; Intensive care; Malnutrition; Parenteral Nutrition; Protein; Quality of life.

Figures

Fig. 1
Fig. 1
Patient flow diagram. * Exclusion reasons add up to greater than 426 because some patients have multiple exclusion reasons. †The large imbalance between arms is purely due to chance. This imbalance was possible despite the blocked randomization due to the large number of strata with incomplete blocks. ‡ Two EN and three EN+PN patients had no days evaluable for nutritional adequacy due to not having any days after randomization and before discharge or death without oral feeding
Fig. 2
Fig. 2
ICU calorie adequacy. a EN calorie adequacy. b EN + PN calorie adequacy. ○ - SPN + EN group, X - EN alone group. The number of patients in each group on each day of the study is shown at the bottom of the graphs. EN enteral nutrition, PN parenteral nutrition, SPN supplemental parenteral nutrition
Fig. 3
Fig. 3
Hospital and ICU mortality outcomes by subgroup. a Mortality outcomes by admit NUTRIC score <5 (n = 73) and >5 (n = 52). b Mortality outcomes by BMI <25 (n = 65) and >35 (n = 60). Odds ratio for hospital mortality by subgroup. BMI body mass index, EN enteral nutrition, ICU intensive care unit, PN parenteral nutrition

References

    1. Preiser JC, van Zanten AR, Berger MM, Biolo G, Casaer MP, Doig GS, et al. Metabolic and nutritional support of critically ill patients: consensus and controversies. Crit Care. 2015;19:35. doi: 10.1186/s13054-015-0737-8.
    1. Heyland DK, Dhaliwal R, Drover JW, Gramlich L, Dodek P, Canadian Critical Care Clinical Practice Guidelines Committee Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. JPEN J Parenter Enteral Nutr. 2003;27:355–3. doi: 10.1177/0148607103027005355.
    1. Kreymann KG, Berger MM, Deutz NE, Hiesmayr M, Jolliet P, Kazandjiev G, et al. ESPEN Guidelines on Enteral Nutrition: Intensive care. Clin Nutr. 2006;25:210–23. doi: 10.1016/j.clnu.2006.01.021.
    1. McClave SA, Martindale RG, Vanek VW, McCarthy M, Roberts P, Taylor B, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) JPEN J Parenter Enteral Nutr. 2009;33:277–316. doi: 10.1177/0148607109335234.
    1. Cahill NE, Dhaliwal R, Day AG, Jiang X, Heyland DK. Nutrition therapy in the critical care setting: what is “best achievable” practice? An international multicenter observational study. Crit Care Med. 2010;38:395–401. doi: 10.1097/CCM.0b013e3181c0263d.
    1. Taylor BE, McClave SA, Martindale RG, Warren MM, Johnson DR, Braunschweig C, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) Crit Care Med. 2016;44:390–438. doi: 10.1097/CCM.0000000000001525.
    1. Singer P, Berger MM, Van den Berghe G, Biolo G, Calder P, Forbes A, et al. ESPEN Guidelines on Parenteral Nutrition: intensive care. Clin Nutr. 2009;28:387–400. doi: 10.1016/j.clnu.2009.04.024.
    1. Heyland DK, Dhaliwal R, Jiang X, Day AG. Identifying critically ill patients who benefit the most from nutrition therapy: the development and initial validation of a novel risk assessment tool. Crit Care. 2011;15:R268. doi: 10.1186/cc10546.
    1. Alberda C, Gramlich L, Jones N, Jeejeebhoy K, Day AG, Dhaliwal R, et al. The relationship between nutritional intake and clinical outcomes in critically ill patients: results of an international multicenter observational study. Intensive Care Med. 2009;35:1728–37. doi: 10.1007/s00134-009-1567-4.
    1. Casaer MP, Mesotten D, Hermans G, Wouters PJ, Schetz M, Meyfroidt G, et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011;365:506–17. doi: 10.1056/NEJMoa1102662.
    1. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Rice TW, Wheeler AP, Thompson BT, Steingrub J, Hite RD, et al. Initial trophic vs full enteral feeding in patients with acute lung injury: the EDEN randomized trial. JAMA. 2012;307:795–803. doi: 10.1001/jama.2012.137.
    1. Doig GS, Simpson F, Sweetman EA, Finger SR, Cooper DJ, Heighes PT, et al. Early parenteral nutrition in critically ill patients with short-term relative contraindications to early enteral nutrition: a randomized controlled trial. JAMA. 2013;309:2130–8. doi: 10.1001/jama.2013.5124.
    1. Heidegger CP, Berger MM, Graf S, Zingg W, Damon P, Costanza MC, et al. Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: a randomised controlled clinical trial. Lancet. 2013;381:385–93. doi: 10.1016/S0140-6736(12)61351-8.
    1. Harvey SE, Parrott F, Harrison DA, Bear DE, Segaran E, Beale R, et al. Trial of the route of early nutritional support in critically ill adults. N Engl J Med. 2014;371:1673–84. doi: 10.1056/NEJMoa1409860.
    1. Drover JW, Cahill NE, Kutsogiannis J, Pagliarello G, Wischmeyer P, Wang M, et al. Nutrition therapy for the critically ill surgical patient: we need to do better! JPEN J Parenter Enteral Nutr. 2010;34:644–52. doi: 10.1177/0148607110372391.
    1. Harvey MA. The truth about consequences--post-intensive care syndrome in intensive care unit survivors and their families. Crit Care Med. 2012;40:2506–7. doi: 10.1097/CCM.0b013e318258e943.
    1. Heyland D, Wischmeyer PE, Day AG. Canadian Clinical Care Trials Group. Glutamine and antioxidants in critically ill patients. N Engl J Med. 2013;369:484–5.
    1. Hsieh FY, Lavori PW, Cohen HJ, Feussner JR. An overview of variance inflation factors for sample-size calculation. Eval Health Prof. 2003;26:239–57. doi: 10.1177/0163278703255230.
    1. Scott NW, McPherson GC, Ramsay CR, Campbell MK. The method of minimization for allocation to clinical trials. a review. Control Clin Trials. 2002;23:662–74. doi: 10.1016/S0197-2456(02)00242-8.
    1. Zusman O, Theilla M, Cohen J, Kagan I, Bendavid I, Singer P. Resting energy expenditure, calorie and protein consumption in critically ill patients: a retrospective cohort study. Crit Care. 2016;20:367. doi: 10.1186/s13054-016-1538-4.
    1. Laterre PF, Macias WL, Janes J, Williams MD, Nelson DR, Girbes AR. Influence of enrollment sequence effect on observed outcomes in the ADDRESS and PROWESS studies of drotrecogin alfa (activated) in patients with severe sepsis. Crit Care. 2008;12:R117. doi: 10.1186/cc7011.
    1. Macias WL, Vallet B, Bernard GR, Vincent JL, Laterre PF, Nelson DR, et al. Sources of variability on the estimate of treatment effect in the PROWESS trial: implications for the design and conduct of future studies in severe sepsis. Crit Care Med. 2004;32:2385–91. doi: 10.1097/.
    1. Elke G, van Zanten AR, Lemieux M, McCall M, Jeejeebhoy KN, Kott M, et al. Enteral versus parenteral nutrition in critically ill patients: an updated systematic review and meta-analysis of randomized controlled trials. Crit Care. 2016;20:117. doi: 10.1186/s13054-016-1298-1.
    1. Manzanares W, Langlois PL, Dhaliwal R, Lemieux M, Heyland DK. Intravenous fish oil lipid emulsions in critically ill patients: an updated systematic review and meta-analysis. Crit Care. 2015;19:167. doi: 10.1186/s13054-015-0888-7.
    1. Rahman A, Hasan RM, Agarwala R, Martin C, Day AG, Heyland DK. Identifying critically-ill patients who will benefit most from nutritional therapy: further validation of the “modified NUTRIC” nutritional risk assessment tool. Clin Nutr. 2016;35:158–62. doi: 10.1016/j.clnu.2015.01.015.
    1. Kaukonen KM, Bailey M, Suzuki S, Pilcher D, Bellomo R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. JAMA. 2014;311:1308–16. doi: 10.1001/jama.2014.2637.
    1. Weycker D, Akhras KS, Edelsberg J, Angus DC, Oster G. Long-term mortality and medical care charges in patients with severe sepsis. Crit Care Med. 2003;31:2316–23. doi: 10.1097/01.CCM.0000085178.80226.0B.
    1. Needham DM, Feldman DR, Kho ME. The functional costs of ICU survivorship. Collaborating to improve post-ICU disability. Am J Respir Crit Care Med. 2011;183:962–4. doi: 10.1164/rccm.201012-2042ED.

Source: PubMed

Подписаться