Resistant starch and protein intake enhances fat oxidation and feelings of fullness in lean and overweight/obese women

Christopher L Gentile, Emery Ward, Jens Juul Holst, Arne Astrup, Michael J Ormsbee, Scott Connelly, Paul J Arciero, Christopher L Gentile, Emery Ward, Jens Juul Holst, Arne Astrup, Michael J Ormsbee, Scott Connelly, Paul J Arciero

Abstract

Background: Diets high in either resistant starch or protein have been shown to aid in weight management. We examined the effects of meals high in non-resistant or resistant starch with and without elevated protein intake on substrate utilization, energy expenditure, and satiety in lean and overweight/obese women.

Methods: Women of varying levels of adiposity consumed one of four pancake test meals in a single-blind, randomized crossover design: 1) waxy maize (control) starch (WMS); 2) waxy maize starch and whey protein (WMS+WP); 3) resistant starch (RS); or 4) RS and whey protein (RS+WP).

Results: Total post-prandial energy expenditure did not differ following any of the four test meals (WMS = 197.9 ± 8.9; WMS+WP = 188 ± 8.1; RS = 191.9 ± 8.9; RS+WP = 195.8 ± 8.7, kcals/180 min), although the combination of RS+WP, but not either intervention alone, significantly increased (P <0.01) fat oxidation (WMS = 89.5 ± 5.4; WMS+WP = 84.5 ± 7.2; RS = 97.4 ± 5.4; RS+WP = 107.8 ± 5.4, kcals/180 min). Measures of fullness increased (125% vs. 45%) and hunger decreased (55% vs. 16%) following WP supplemented versus non-whey conditions (WMS+WP, RS+WP vs. WMS, RS), whereas circulating hunger and satiety factors were not different among any of the test meals. However, peptide YY (PYY) was significantly elevated at 180 min following RS+WP meal.

Conclusions: The combined consumption of dietary resistant starch and protein increases fat oxidation, PYY, and enhances feelings of satiety and fullness to levels that may be clinically relevant if maintained under chronic conditions. This trial was registered at clinicaltrials.gov as NCT02418429.

Figures

Fig. 1
Fig. 1
Test Day Timeline
Fig. 2
Fig. 2
Effect of test meals on thermic response. Change in resting metabolic rate in the 180 min period immediately following the four test meals. WMS waxy maize control starch meal; WMS+WP waxy maize control starch and whey protein meal; RS resistant starch meal; RS+WP resistant starch and whey protein meal
Fig. 3
Fig. 3
Effect of test meals on the respiratory exchange ratio. Change in respiratory exchange ratio in the 180 min period immediately following the four test meals. WMS waxy maize control starch meal; WMS+WP waxy maize control starch and whey protein meal; RS resistant starch meal; RS+WP resistant starch and whey protein meal
Fig. 4
Fig. 4
Effect of test meals on substrate oxidation. a Change (kcal/day) in carbohydrate oxidation in the 180 min period immediately following the four test meals; (b) Change (kcal/day) in fat oxidation in the 180 min period immediately following the four test meals; (c) Percent change in fat oxidation in the 180 min period immediately following the four test meals; WMS waxy maize control starch meal; WMS+WP waxy maize control starch and whey protein meal; RS resistant starch meal; RS+WP resistant starch and whey protein meal
Fig. 5
Fig. 5
Effect of test meals on circulating factors. Change circulating factors in the 180 min period immediately following the four test meals. a glucose; (b) insulin; (c) glucagon like peptide-1; (d) gastric inhibitory polypeptide; (e) peptide YY 3–36; (f) ghrelin; WMS waxy maize control starch meal; RS resistant starch meal; RS+WP resistant starch and whey protein meal
Fig. 6
Fig. 6
Effect of test meals on feelings of satiety, hunger, and desire to eat. Change in scores of hunger (a); quantity of food individuals though they could eat (b); feelings of fullness (c); and the desire to eat (d) in the 180 min period immediately following the four test meals; WMS waxy maize control starch meal; WMS+WP waxy maize control starch and whey protein meal; RS resistant starch meal; RS+WP resistant starch and whey protein mealTime effect: P = 0.001

References

    1. Higgins JA. Resistant starch and energy balance: impact on weight loss and maintenance. Crit Rev Food Sci Nutr. 2014;54(9):1158–66. doi: 10.1080/10408398.2011.629352.
    1. Birt DF, Boylston T, Hendrich S, Jane JL, Hollis J, Li L, et al. Resistant starch: promise for improving human health. Adv Nutr. 2013;4(6):587–601. doi: 10.3945/an.113.004325.
    1. Higgins JA, Jackman MR, Brown IL, Johnson GC, Steig A, Wyatt HR, et al. Resistant starch and exercise independently attenuate weight regain on a high fat diet in a rat model of obesity. Nutr Metab. 2011;8:49. doi: 10.1186/1743-7075-8-49.
    1. Lerer-Metzger M, Rizkalla SW, Luo J, Champ M, Kabir M, Bruzzo F, et al. Effects of long-term low-glycaemic index starchy food on plasma glucose and lipid concentrations and adipose tissue cellularity in normal and diabetic rats. Br J Nutr. 1996;75(5):723–32. doi: 10.1079/BJN19960176.
    1. Bodinham CL, Frost GS, Robertson MD. Acute ingestion of resistant starch reduces food intake in healthy adults. Br J Nutr. 2010;103(6):917–22. doi: 10.1017/S0007114509992534.
    1. Keenan MJ, Zhou J, McCutcheon KL, Raggio AM, Bateman HG, Todd E, et al. Effects of resistant starch, a non-digestible fermentable fiber, on reducing body fat. Obesity. 2006;14(9):1523–34. doi: 10.1038/oby.2006.176.
    1. Tapsell LC. Diet and metabolic syndrome: where does resistant starch fit in? J AOAC Int. 2004;87(3):756–60.
    1. Zhou J, Martin RJ, Tulley RT, Raggio AM, McCutcheon KL, Shen L, et al. Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. Am J Physiol Endocrinol Metab. 2008;295(5):E1160–6. doi: 10.1152/ajpendo.90637.2008.
    1. Zhang L, Li HT, Shen L, Fang QC, Qian LL, Jia WP. Effect of dietary resistant starch on prevention and treatment of obesity-related diseases and its possible mechanisms. Biomed Environ Sci. 2015;28(4):291–7.
    1. Keenan MJ, Zhou J, Hegsted M, Pelkman C, Durham HA, Coulon DB, et al. Role of resistant starch in improving gut health, adiposity, and insulin resistance. Adv Nutr. 2015;6(2):198–205. doi: 10.3945/an.114.007419.
    1. Shimotoyodome A, Suzuki J, Kameo Y, Hase T. Dietary supplementation with hydroxypropyl-distarch phosphate from waxy maize starch increases resting energy expenditure by lowering the postprandial glucose-dependent insulinotropic polypeptide response in human subjects. Br J Nutr. 2011;106(1):96–104. doi: 10.1017/S0007114510005854.
    1. Arciero PJ, Baur D, Connelly S, Ormsbee MJ. Timed-daily ingestion of whey protein and exercise training reduces visceral adipose tissue mass and improves insulin resistance: the PRISE study. J Appl Physiol. 2014;117(1):1–10. doi: 10.1152/japplphysiol.00152.2014.
    1. Belza A, Ritz C, Sorensen MQ, Holst JJ, Rehfeld JF, Astrup A. Contribution of gastroenteropancreatic appetite hormones to protein-induced satiety. Am J Clin Nutr. 2013;97(5):980–9. doi: 10.3945/ajcn.112.047563.
    1. Arciero PJ, Ormsbee MJ, Gentile CL, Nindl BC, Brestoff JR, Ruby M. Increased protein intake and meal frequency reduces abdominal fat during energy balance and energy deficit. Obesity. 2013;21(7):1357–66. doi: 10.1002/oby.20296.
    1. Zhou J, Martin RJ, Raggio AM, Shen L, McCutcheon K, Keenan MJ. The importance of GLP-1 and PYY in resistant starch’s effect on body fat in mice. Mol Nutr Food Res. 2015;59(5):1000–3. doi: 10.1002/mnfr.201400904.
    1. van der Klaauw AA, Keogh JM, Henning E, Trowse VM, Dhillo WS, Ghatei MA, et al. High protein intake stimulates postprandial GLP1 and PYY release. Obesity. 2013;21(8):1602–7. doi: 10.1002/oby.20154.
    1. Arciero PJ, Hannibal NS, 3rd, Nindl BC, Gentile CL, Hamed J, Vukovich MD. Comparison of creatine ingestion and resistance training on energy expenditure and limb blood flow. Metabolism. 2001;50(12):1429–34. doi: 10.1053/meta.2001.28159.
    1. Arciero PJ, Ormsbee MJ. Relationship of blood pressure, behavioral mood state, and physical activity following caffeine ingestion in younger and older women. Appl Physiol Nutr Metab. 2009;34(4):754–62. doi: 10.1139/H09-068.
    1. Keogh JB, Lau CW, Noakes M, Bowen J, Clifton PM. Effects of meals with high soluble fibre, high amylose barley variant on glucose, insulin, satiety and thermic effect of food in healthy lean women. Eur J Clin Nutr. 2007;61(5):597–604.
    1. Higgins JA, Higbee DR, Donahoo WT, Brown IL, Bell ML, Bessesen DH. Resistant starch consumption promotes lipid oxidation. Nutr Metab. 2004;1(1):8. doi: 10.1186/1743-7075-1-8.
    1. Ranganathan S, Champ M, Pechard C, Blanchard P, Nguyen M, Colonna P, et al. Comparative study of the acute effects of resistant starch and dietary fibers on metabolic indexes in men. Am J Clin Nutr. 1994;59(4):879–83.
    1. Wang X, Brown IL, Khaled D, Mahoney MC, Evans AJ, Conway PL. Manipulation of colonic bacteria and volatile fatty acid production by dietary high amylose maize (amylomaize) starch granules. J Appl Microbiol. 2002;93(3):390–7. doi: 10.1046/j.1365-2672.2002.01704.x.
    1. Maathuis A, Hoffman A, Evans A, Sanders L, Venema K. The effect of the undigested fraction of maize products on the activity and composition of the microbiota determined in a dynamic in vitro model of the human proximal large intestine. J Am Coll Nutr. 2009;28(6):657–66. doi: 10.1080/07315724.2009.10719798.
    1. Acheson KJ, Blondel-Lubrano A, Oguey-Araymon S, Beaumont M, Emady-Azar S, Ammon-Zufferey C, et al. Protein choices targeting thermogenesis and metabolism. Am J Clin Nutr. 2011;93(3):525–34. doi: 10.3945/ajcn.110.005850.
    1. Miles JM, Jensen MD. Does glucagon regulate adipose tissue lipolysis? J Clin EndocrinolMetab. 1993;77(1):5A-B. doi: 10.1210/jcem.77.1.8325959.
    1. Westerterp-Plantenga MS, Rolland V, Wilson SA, Westerterp KR. Satiety related to 24 h diet-induced thermogenesis during high protein/carbohydrate vs high fat diets measured in a respiration chamber. Eur J Clin Nutr. 1999;53(6):495–502. doi: 10.1038/sj.ejcn.1600782.
    1. Weigle DS, Breen PA, Matthys CC, Callahan HS, Meeuws KE, Burden VR, et al. A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. Am J Clin Nutr. 2005;82(1):41–8.
    1. Karalus M, Clark M, Greaves KA, Thomas W, Vickers Z, Kuyama M, et al. Fermentable fibers do not affect satiety or food intake by women who do not practice restrained eating. J Acad Nutr Diet. 2012;112(9):1356–62. doi: 10.1016/j.jand.2012.05.022.
    1. Belobrajdic DP, King RA, Christophersen CT, Bird AR. Dietary resistant starch dose-dependently reduces adiposity in obesity-prone and obesity-resistant male rats. Nutr Metab. 2012;9(1):93. doi: 10.1186/1743-7075-9-93.
    1. Behall KM, Scholfield DJ, Canary J. Effect of starch structure on glucose and insulin responses in adults. Am J Clin Nutr. 1988;47(3):428–32.
    1. Raben A, Tagliabue A, Christensen NJ, Madsen J, Holst JJ, Astrup A. Resistant starch: the effect on postprandial glycemia, hormonal response, and satiety. Am J Clin Nutr. 1994;60(4):544–51.
    1. Granfeldt Y, Drews A, Bjorck I. Arepas made from high amylose corn flour produce favorably low glucose and insulin responses in healthy humans. J Nutr. 1995;125(3):459–65.
    1. Frid AH, Nilsson M, Holst JJ, Bjorck IM. Effect of whey on blood glucose and insulin responses to composite breakfast and lunch meals in type 2 diabetic subjects. Am J Clin Nutr. 2005;82(1):69–75.

Source: PubMed

Подписаться