Lung-protective mechanical ventilation for patients undergoing abdominal laparoscopic surgeries: a randomized controlled trial

Trung Kien Nguyen, Viet Luong Nguyen, Truong Giang Nguyen, Duc Hanh Mai, Ngoc Quynh Nguyen, The Anh Vu, Anh Nguyet Le, Quang Huy Nguyen, Chi Tue Nguyen, Dang Thu Nguyen, Trung Kien Nguyen, Viet Luong Nguyen, Truong Giang Nguyen, Duc Hanh Mai, Ngoc Quynh Nguyen, The Anh Vu, Anh Nguyet Le, Quang Huy Nguyen, Chi Tue Nguyen, Dang Thu Nguyen

Abstract

Background: Pneumoperitoneum and Trendelenburg position in laparoscopic surgeries could contribute to postoperative pulmonary dysfunction. In recent years, intraoperative lung-protective mechanical ventilation (LPV) has been reportedly able to attenuate ventilator-induced lung injuries (VILI). Our objectives were to test the hypothesis that LPV could improve intraoperative oxygenation function, pulmonary mechanics and early postoperative atelectasis in laparoscopic surgeries.

Methods: In this randomized controlled clinical trial, 62 patients indicated for elective abdominal laparoscopic surgeries with an expected duration of greater than 2 h were randomly assigned to receive either lung-protective ventilation (LPV) with a tidal volume (Vt) of 7 ml kg- 1 ideal body weight (IBW), 10 cmH2O positive end-expiratory pressure (PEEP) combined with regular recruitment maneuvers (RMs) or conventional ventilation (CV) with a Vt of 10 ml kg- 1 IBW, 0 cmH2O in PEEP and no RMs. The primary endpoints were the changes in the ratio of PaO2 to FiO2 (P/F). The secondary endpoints were the differences between the two groups in PaO2, alveolar-arterial oxygen gradient (A-aO2), intraoperative pulmonary mechanics and the incidence of atelectasis detected on chest x-ray on the first postoperative day.

Results: In comparison to CV group, the intraoperative P/F and PaO2 in LPV group were significantly higher while the intraoperative A-aO2 was clearly lower. Cdyn and Cstat at all the intraoperative time points in LPV group were significantly higher compared to CV group (p < 0.05). There were no differences in the incidence of atelectasis on day one after surgery between the two groups.

Conclusions: Lung protective mechanical ventilation significantly improved intraoperative pulmonary oxygenation function and pulmonary compliance in patients experiencing various abdominal laparoscopic surgeries, but it could not ameliorate early postoperative atelectasis and oxygenation function on the first day after surgery.

Trial registration: https://www.clinicaltrials.gov/identifier: NCT04546932 (09/05/2020).

Keywords: Low tidal volume; Lung-protective ventilation; Positive end-expiratory pressure; Recruitment maneuvers.

Conflict of interest statement

No author has any conflict of interest regarding the publication of this article.

Figures

Fig. 1
Fig. 1
Flow diagram of the process through the phases of the trial
Fig. 2
Fig. 2
Intraoperative EtCO2 in the two groups with interval of 15 min from T0 (after intubation) to T14 (3.5 h after intubation). Data are reported as mean ± SD. p < 0.05 versus CV group
Fig. 3
Fig. 3
Changes in intraoperative pulmonary dynamic compliance (Cdyn). Data are reported as mean ± SD. At all time points, the difference between the two groups was significant with p < 0.05. H0 (after intubation), H1 (30 min after pneumoperitoneum), H2 (1 h after pneumoperitoneum), H3 (2 h after pneumoperitoneum), Hkt (10 min after pneumoperitoneum stopped) and Hro (before extubation)
Fig. 4
Fig. 4
Changes in intraoperative pulmonary static compliance (Cstat). Data are reported as mean ± SD. At all time points, the difference between the two groups was significant with p < 0.05. H0 (after intubation), H1 (30 min after pneumoperitoneum), H2 (1 h after pneumoperitoneum), H3 (2 h after pneumoperitoneum), Hkt (10 min after pneumoperitoneum stopped) and Hro (before extubation)
Fig. 5
Fig. 5
Intraoperative driving pressure (DP) in the two groups. Data are reported as mean ± SD. At all time points, the difference between the two groups was significant with p < 0.05. H0 (after intubation), H1 (30 min after pneumoperitoneum), H2 (1 h after pneumoperitoneum), H3 (2 h after pneumoperitoneum), Hkt (10 min after pneumoperitoneum stopped) and Hro (before extubation)

References

    1. Duggan M, Kavanagh BP. Pulmonary atelectasis: a pathogenic perioperative entity. Anesthesiology. 2005;102(4):838–854. doi: 10.1097/00000542-200504000-00021.
    1. Magnusson L, Spahn DR. New concepts of atelectasis during general anaesthesia. Br J Anaesth. 2003;91(1):61–72. doi: 10.1093/bja/aeg085.
    1. Grasso S, Terragni P, Mascia L, Fanelli V, Quintel M, Herrmann P, et al. Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury. Crit Care Med. 2004;32(4):1018–1027. doi: 10.1097/.
    1. Hedenstierna G, Edmark L. The effects of anesthesia and muscle paralysis on the respiratory system. Intensive Care Med. 2005;31(10):1327–1335. doi: 10.1007/s00134-005-2761-7.
    1. Reinius H, Jonsson L, Gustafsson S, Sundbom M, Duvernoy O, Pelosi P, et al. Prevention of atelectasis in morbidly obese patients during general anesthesia and paralysis: a computerized tomography study. Anesthesiology. 2009;111(5):979–987. doi: 10.1097/ALN.0b013e3181b87edb.
    1. Choi G, Wolthuis EK, Bresser P, Levi M, van der Poll T, Dzoljic M, et al. Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents alveolar coagulation in patients without lung injury. Anesthesiology. 2006;105(4):689–695. doi: 10.1097/00000542-200610000-00013.
    1. Wolthuis EK, Choi G, Dessing MC, Bresser P, Lutter R, Dzoljic M, et al. Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents pulmonary inflammation in patients without preexisting lung injury. Anesthesiology. 2008;108(1):46–54. doi: 10.1097/01.anes.0000296068.80921.10.
    1. Tusman G, Bohm SH, Warner DO, Sprung J. Atelectasis and perioperative pulmonary complications in high-risk patients. Curr Opin Anaesthesiol. 2012;25(1):1–10. doi: 10.1097/ACO.0b013e32834dd1eb.
    1. Jaber S, Coisel Y, Chanques G, Futier E, Constantin JM, Michelet P, et al. A multicentre observational study of intra-operative ventilatory management during general anaesthesia: tidal volumes and relation to body weight. Anaesthesia. 2012;67(9):999–1008. doi: 10.1111/j.1365-2044.2012.07218.x.
    1. Haliloglu M, Bilgili B, Ozdemir M, Umuroglu T, Bakan N. Low tidal volume positive end-expiratory pressure versus high tidal volume zero-positive end-expiratory pressure and postoperative pulmonary functions in robot-assisted laparoscopic radical prostatectomy. Med Princ Pract. 2017;26(6):573–578. doi: 10.1159/000484693.
    1. Hansen JK, Anthony DG, Li L, Wheeler D, Sessler DI, Bashour CA. Comparison of positive end-expiratory pressure of 8 versus 5 cm H2O on outcome after cardiac operations. J Intensive Care Med. 2015;30(6):338–343. doi: 10.1177/0885066613519571.
    1. Reis Miranda D, Gommers D, Struijs A, Dekker R, Mekel J, Feelders R, et al. Ventilation according to the open lung concept attenuates pulmonary inflammatory response in cardiac surgery. Eur J Cardiothorac Surg. 2005;28(6):889–895. doi: 10.1016/j.ejcts.2005.10.007.
    1. Tusman G, Bohm SH, Suarez-Sipmann F, Turchetto E. Alveolar recruitment improves ventilatory efficiency of the lungs during anesthesia. Can J Anaesth. 2004;51(7):723–727. doi: 10.1007/BF03018433.
    1. Futier E, Constantin JM, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013;369(5):428–437. doi: 10.1056/NEJMoa1301082.
    1. Maracaja-Neto LF, Vercosa N, Roncally AC, Giannella A, Bozza FA, Lessa MA. Beneficial effects of high positive end-expiratory pressure in lung respiratory mechanics during laparoscopic surgery. Acta Anaesthesiol Scand. 2009;53(2):210–217. doi: 10.1111/j.1399-6576.2008.01826.x.
    1. Pelosi P, Ravagnan I, Giurati G, Panigada M, Bottino N, Tredici S, et al. Positive end-expiratory pressure improves respiratory function in obese but not in normal subjects during anesthesia and paralysis. Anesthesiology. 1999;91(5):1221–1231. doi: 10.1097/00000542-199911000-00011.
    1. Cinnella G, Grasso S, Spadaro S, Rauseo M, Mirabella L, Salatto P, et al. Effects of recruitment maneuver and positive end-expiratory pressure on respiratory mechanics and transpulmonary pressure during laparoscopic surgery. Anesthesiology. 2013;118(1):114–122. doi: 10.1097/ALN.0b013e3182746a10.
    1. Bouadma L, Dreyfuss D, Ricard JD, Martet G, Saumon G. Mechanical ventilation and hemorrhagic shock-resuscitation interact to increase inflammatory cytokine release in rats. Crit Care Med. 2007;35(11):2601–2606. doi: 10.1097/01.CCM.0000286398.78243.CE.
    1. Karsten J, Luepschen H, Grossherr M, Bruch HP, Leonhardt S, Gehring H, et al. Effect of PEEP on regional ventilation during laparoscopic surgery monitored by electrical impedance tomography. Acta Anaesthesiol Scand. 2011;55(7):878–886. doi: 10.1111/j.1399-6576.2011.02467.x.
    1. Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37(9):2642–2647. doi: 10.1097/CCM.0b013e3181a590da.
    1. Cannesson M, Le Manach Y, Hofer CK, Goarin JP, Lehot JJ, Vallet B, et al. Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: a “gray zone” approach. Anesthesiology. 2011;115(2):231–241. doi: 10.1097/ALN.0b013e318225b80a.
    1. Biais M, de Courson H, Lanchon R, Pereira B, Bardonneau G, Griton M, et al. Mini-fluid challenge of 100 ml of crystalloid predicts fluid responsiveness in the operating room. Anesthesiology. 2017;127(3):450–456. doi: 10.1097/ALN.0000000000001753.
    1. Yu AL, Cai XZ, Gao XJ, Zhang ZW, Ma ZS, Ma LL, et al. Determinants of immediate extubation in the operating room after total thoracoscopic closure of congenital heart defects. Med Princ Pract. 2013;22(3):234–238. doi: 10.1159/000345844.
    1. Sprung J, Whalen FX, Comfere T, Bosnjak ZJ, Bajzer Z, Gajic O, et al. Alveolar recruitment and arterial desflurane concentration during bariatric surgery. Anesth Analg. 2009;108(1):120–127. doi: 10.1213/ane.0b013e31818db6c7.
    1. Chan YH. Randomised controlled trials (RCTs)--sample size: the magic number? Singap Med J. 2003;44(4):172–174.
    1. Pi X, Cui Y, Wang C, Guo L, Sun B, Shi J, et al. Low tidal volume with PEEP and recruitment expedite the recovery of pulmonary function. Int J Clin Exp Pathol. 2015;8(11):14305–14314.
    1. Sprung J, Whalley DG, Falcone T, Wilks W, Navratil JE, Bourke DL. The effects of tidal volume and respiratory rate on oxygenation and respiratory mechanics during laparoscopy in morbidly obese patients. Anesth Analg. 2003;97(1):268–274. doi: 10.1213/01.ANE.0000067409.33495.1F.
    1. Sprung J, Whalley DG, Falcone T, Warner DO, Hubmayr RD, Hammel J. The impact of morbid obesity, pneumoperitoneum, and posture on respiratory system mechanics and oxygenation during laparoscopy. Anesth Analg. 2002;94(5):1345–1350. doi: 10.1097/00000539-200205000-00056.
    1. Hazebroek EJ, Haitsma JJ, Lachmann B, Bonjer HJ. Mechanical ventilation with positive end-expiratory pressure preserves arterial oxygenation during prolonged pneumoperitoneum. Surg Endosc. 2002;16(4):685–689. doi: 10.1007/s00464-001-8174-y.
    1. Tusman G, Bohm SH, De Anda GV, do Campo JL, Lachmann B. ‘Alveolar recruitment strategy’ improves arterial oxygenation during general anaesthesia. Br J Anaesth. 1999;82(1):8–13. doi: 10.1093/bja/82.1.8.
    1. Pang CK, Yap J, Chen PP. The effect of an alveolar recruitment strategy on oxygenation during laparascopic cholecystectomy. Anaesth Intensive Care. 2003;31(2):176–180. doi: 10.1177/0310057X0303100206.
    1. Whalen FX, Gajic O, Thompson GB, Kendrick ML, Que FL, Williams BA, et al. The effects of the alveolar recruitment maneuver and positive end-expiratory pressure on arterial oxygenation during laparoscopic bariatric surgery. Anesth Analg. 2006;102(1):298–305. doi: 10.1213/01.ane.0000183655.57275.7a.
    1. Allen SJ. In: AS. T. Advances in respiratory life support. Hoyt JW, editor. Philadelphia: WB Saunders; 1991.
    1. Liu J, Meng Z, Lv R, Zhang Y, Wang G, Xie J. Effect of intraoperative lung-protective mechanical ventilation on pulmonary oxygenation function and postoperative pulmonary complications after laparoscopic radical gastrectomy. Braz J Med Biol Res. 2019;52(6):e8523. doi: 10.1590/1414-431x20198523.
    1. Feihl F, Perret C. Permissive hypercapnia. How permissive should we be? Am J Respir Crit Care Med. 1994;150(6 Pt 1):1722–1737. doi: 10.1164/ajrccm.150.6.7952641.
    1. Valenza F, Chevallard G, Fossali T, Salice V, Pizzocri M, Gattinoni L. Management of mechanical ventilation during laparoscopic surgery. Best Pract Res Clin Anaesthesiol. 2010;24(2):227–241. doi: 10.1016/j.bpa.2010.02.002.
    1. Strang CM, Hachenberg T, Freden F, Hedenstierna G. Development of atelectasis and arterial to end-tidal PCO2-difference in a porcine model of pneumoperitoneum. Br J Anaesth. 2009;103(2):298–303. doi: 10.1093/bja/aep102.
    1. Perilli V, Sollazzi L, Bozza P, Modesti C, Chierichini A, Tacchino RM, et al. The effects of the reverse trendelenburg position on respiratory mechanics and blood gases in morbidly obese patients during bariatric surgery. Anesth Analg. 2000;91(6):1520–1525. doi: 10.1097/00000539-200012000-00041.
    1. Hong CM, Xu DZ, Lu Q, Cheng Y, Pisarenko V, Doucet D, et al. Low tidal volume and high positive end-expiratory pressure mechanical ventilation results in increased inflammation and ventilator-associated lung injury in normal lungs. Anesth Analg. 2010;110(6):1652–1660. doi: 10.1213/ANE.0b013e3181cfc416.
    1. Mathis MR, Duggal NM, Likosky DS, Haft JW, Douville NJ, Vaughn MT, et al. Intraoperative mechanical ventilation and postoperative pulmonary complications after cardiac surgery. Anesthesiology. 2019;131(5):1046–1062. doi: 10.1097/ALN.0000000000002909.
    1. Lundquist H, Hedenstierna G, Strandberg A, Tokics L, Brismar B. CT-assessment of dependent lung densities in man during general anaesthesia. Acta Radiol. 1995;36(6):626–632. doi: 10.3109/02841859509176761.
    1. Pelosi P, Goldner M, McKibben A, Adams A, Eccher G, Caironi P, et al. Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med. 2001;164(1):122–130. doi: 10.1164/ajrccm.164.1.2007010.
    1. Joyce CJ, Williams AB. Kinetics of absorption atelectasis during anesthesia: a mathematical model. J Appl Physiol (1985) 1999;86(4):1116–1125. doi: 10.1152/jappl.1999.86.4.1116.
    1. Rothen HU, Sporre B, Engberg G, Wegenius G, Hogman M, Hedenstierna G. Influence of gas composition on recurrence of atelectasis after a reexpansion maneuver during general anesthesia. Anesthesiology. 1995;82(4):832–842. doi: 10.1097/00000542-199504000-00004.
    1. Juno J, Marsh HM, Knopp TJ, Rehder K. Closing capacity in awake and anesthetized-paralyzed man. J Appl Physiol Respir Environ Exerc Physiol. 1978;44(2):238–244.
    1. Cai H, Gong H, Zhang L, Wang Y, Tian Y. Effect of low tidal volume ventilation on atelectasis in patients during general anesthesia: a computed tomographic scan. J Clin Anesth. 2007;19(2):125–129. doi: 10.1016/j.jclinane.2006.08.008.
    1. Rusca M, Proietti S, Schnyder P, Frascarolo P, Hedenstierna G, Spahn DR, et al. Prevention of atelectasis formation during induction of general anesthesia. Anesth Analg. 2003;97(6):1835–1839. doi: 10.1213/01.ANE.0000087042.02266.F6.
    1. Satoh D, Kurosawa S, Kirino W, Wagatsuma T, Ejima Y, Yoshida A, et al. Impact of changes of positive end-expiratory pressure on functional residual capacity at low tidal volume ventilation during general anesthesia. J Anesth. 2012;26(5):664–669. doi: 10.1007/s00540-012-1411-9.
    1. Zhao Z, Guttmann J, Moller K. Adaptive SLICE method: an enhanced method to determine nonlinear dynamic respiratory system mechanics. Physiol Meas. 2012;33(1):51–64. doi: 10.1088/0967-3334/33/1/51.
    1. Gregoretti C, Pelosi P. A physiologically oriented approach to the perioperative period: the role of the anaesthesiologist. Best Pract Res Clin Anaesthesiol. 2010;24(2):vii–viii. doi: 10.1016/j.bpa.2010.03.001.

Source: PubMed

Подписаться