Oral adenosine 5'-triphosphate supplementation improved hemodynamic and autonomic parameters after exercise in hypertensive women

Marcelo Conrado de Freitas, Ana Laura Ricci-Vitor, Renan Valero Freire, Erico Chagas Caperuto, Luiz Carlos Marques Vanderlei, Fábio Santos Lira, Fabrício Eduardo Rossi, Marcelo Conrado de Freitas, Ana Laura Ricci-Vitor, Renan Valero Freire, Erico Chagas Caperuto, Luiz Carlos Marques Vanderlei, Fábio Santos Lira, Fabrício Eduardo Rossi

Abstract

The aim of this study was to verify the autonomic modulation and blood pressure after adenosine-5'-triphosphate (ATP) supplementation associated to acute aerobic exercise in hypertensive women. Eleven hypertensive women (age, 61.8±5.0 years) completed a randomized, double blind trial: ATP supplement condition (ATP=400 mg) or placebo. After 30 min of supplementation or placebo intake, the subjects performed 30 min of aerobic exercise (70%-75% of maximum heart rate). The autonomic modulation was assessed by heart rate variability during rest and recovery (postexercise until 30 min of recovery), the square root of the mean squared difference between adjacent RR intervals (RMSSD), standard deviation of successive values (SDNN), low frequency (LF) and high frequency (HF) were measured. The blood pressure (systolic blood pressure [SBP] and diastolic blood pressure, mmHg) were recorded at rest, immediately postexercise, post-10, post-20, and post-30 min after exercise. For RMSSD, there was statistically significant difference during recovery, with higher RMSSD for ATP compared to placebo (rest=16.4±8.5 vs. placebo=11.6±4.0; ATP=18.5±9.7 msec; P=0.020). When analyzing the delta (recovery minus rest), the RMSSD (ATP=2.1± 7.2 msec vs. placebo=-4.7±7.5 msec; P=0.009), LF (ATP=-19.8±122.7 vs. placebo=-94.1±200.2 msec2; P=0.02), and SDNN (ATP=-2.8±12.2 msec vs. placebo=-10.6±10.5 msec; P=0.010) were higher for ATP than placebo. Furthermore, there was a greater postexercise hypotension at 20 min for ATP (SBP: ATP=-13.2±8.4 mmHg vs. placebo=-6.1±9.9 mmHg; P=0.006). Acute ATP supplementation promoted greater postexercise hypotension for systolic blood pressure and induced faster recovery of heart rate variability in hypertensive women.

Keywords: ATP supplementation; Aerobic exercise; Autonomic nervous system; Hypertension; Nutrition.

Conflict of interest statement

CONFLICT OF INTEREST No potential conflict of interest relevant to this article was reported.

Figures

Fig. 1
Fig. 1
Experimental design. BP, blood pressure; HRV, heart rate variability; SUP, 400 mg of ATP or placebo; ATP, adenosine-5’-triphosphate; HRmax, maximum heart rate.
Fig. 2
Fig. 2
Comparison on delta heart rate and heart rate variability. (A) Delta (recovery minus rest) of the square root of the mean squared difference between adjacent RR intervals (RMSSD, ms). (B) Delta of the standard deviation of all normal RR intervals (SDNN, ms). (C) Delta of the low frequency (LF, ms2). (D) Delta of the high frequency (HF, ms2). (E) Delta of the heart rate. (F) Delta of the LF/HF ratio. ATP, adenosine-5’-triphosphate. *Statistically significantly differences between ATP and placebo conditions.
Fig. 3
Fig. 3
Comparison on systolic and diastolic blood pressure for ATP and Placebo conditions. (A) Systolic blood pressure across time (SBP, mmHg). (B) Diastolic blood pressure across time (DBP, mmHg). (C) Delta of systolic blood pressure (Post-20 min of recovery minus rest). (D) Absolute variation on diastolic blood pressure (Post-20 min of recovery minus rest). a, main effect of time with difference between rest; b, main effect of time with difference between 5 min. ATP, adenosine-5’-triphosphate.

References

    1. Arts IC, Coolen EJ, Bours MJ, Huyghebaert N, Stuart MA, Bast A, Dagnelie PC. Adenosine 5’-triphosphate (ATP) supplements are not orally bioavailable: a randomized, placebo-controlled cross-over trial in healthy humans. J Int Soc Sports Nutr. 2012;9:16.
    1. Besnier F, Labrunée M, Pathak A, Pavy-Le Traon A, Galès C, Sénard JM, Guiraud T. Exercise training-induced modification in autonomic nervous system: An update for cardiac patients. Ann Phys Rehabil Med. 2017;60:27–35.
    1. Borresen J, Lambert MI. Autonomic control of heart rate during and after exercise: measurements and implications for monitoring training status. Sports Med. 2008;38:633–646.
    1. Cabral-Santos C, Giacon TR, Campos EZ, Gerosa-Neto J, Rodrigues B, Vanderlei LC, Lira FS. Impact of high-intensity intermittent and moderate-intensity continuous exercise on autonomic modulation in young men. Int J Sports Med. 2016;37:431–435.
    1. Casey DP, Joyner MJ. Compensatory vasodilatation during hypoxic exercise: mechanisms responsible for matching oxygen supply to demand. J Physiol. 2012;590:6321–6326.
    1. Coleman A, Freeman P, Steel S, Shennan A. Validation of the Omron MX3 Plus oscillometric blood pressure monitoring device according to the European Society of Hypertension international protocol. Blood Press Monit. 2005;10:165–168.
    1. Cornelissen VA, Buys R, Smart NA. Endurance exercise beneficially affects ambulatory blood pressure: a systematic review and meta-analysis. J Hypertens. 2013;31:639–648.
    1. Cornelissen VA, Smart NA. Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc. 2013;2:e004473.
    1. Freitas MC, Cholewa JM, Gerosa-Neto J, Gonçalves DC, Caperuto EC, Lira FS, Rossi FE. A single dose of oral atp supplementation improves performance and physiological response during lower body resistance exercise in recreational resistance trained males. J Strength Cond Res. 2017 Oct 16; doi: 10.1519/JSC.0000000000002198. [Epub].
    1. Gomes Anunciação P, Doederlein Polito M. A review on post-exercise hypotension in hypertensive individuals. Arq Bras Cardiol. 2011;96:e100–109.
    1. González-Alonso J. ATP as a mediator of erythrocyte-dependent regulation of skeletal muscle blood flow and oxygen delivery in humans. J Physiol. 2012;590:5001–5013.
    1. Grassi G, Ram VS. Evidence for a critical role of the sympathetic nervous system in hypertension. J Am Soc Hypertens. 2016;10:457–466.
    1. Halliwill JR. Mechanisms and clinical implications of post-exercise hypotension in humans. Exerc Sport Sci Rev. 2001;29:65–70.
    1. Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, Finkelstein EA, Hong Y, Johnston SC, Khera A, Lloyd-Jones DM, Nelson SA, Nichol G, Orenstein D, Wilson PW, Woo YJ, American Heart Association Advocacy Coordinating Committee; Stroke Council; Council on Cardiovascular Radiology and Intervention; Council on Clinical Cardiology; Council on Epidemiology and Prevention; Council on Arteriosclerosis; Thrombosis and Vascular Biology; Council on Cardiopulmonary; Critical Care; Perioperative and Resuscitation; Council on Cardiovascular Nursing; Council on the Kidney in Cardiovascular Disease; Council on Cardiovascular Surgery and Anesthesia, and Interdisciplinary Council on Quality of Care and Outcomes Research Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;123:933–944.
    1. Jäger R, Roberts MD, Lowery RP, Joy JM, Cruthirds CL, Lockwood CM, Rathmacher JA, Purpura M, Wilson JM. Oral adenosine-5’-triphosphate (ATP) administration increases blood flow following exercise in animals and humans. J Int Soc Sports Nutr. 2014;11:28.
    1. Joyner MJ, Casey DP. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev. 2015;95:549–601.
    1. Kario K, Motai K, Mitsuhashi T, Suzuki T, Nakagawa Y, Ikeda U, Matsuo T, Nakayama T, Shimada K. Autonomic nervous system dysfunction in elderly hypertensive patients with abnormal diurnal blood pressure variation: relation to silent cerebrovascular disease. Hypertension. 1997;30:1504–1510.
    1. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365:217–223.
    1. Kenttä T, Viik J, Karsikas M, Seppänen T, Nieminen T, Lehtimäki T, Nikus K, Lehtinen R, Kähönen M, Huikuri HV. Postexercise recovery of the spatial QRS/T angle as a predictor of sudden cardiac death. Heart Rhythm. 2012;9:1083–1089.
    1. Kichenin K, Seman M. Chronic oral administration of ATP modulates nucleoside transport and purine metabolism in rats. J Pharmacol Exp Ther. 2000;294:126–133.
    1. Kleiger RE, Miller JP, Bigger JT, Jr, Moss AJ. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987;59:256–262.
    1. Kulics JM, Collins HL, DiCarlo SE. Postexercise hypotension is mediated by reductions in sympathetic nerve activity. Am J Physiol. 1999;276(1 Pt 2):H27–32.
    1. Lahiri MK, Chicos A, Bergner D, Ng J, Banthia S, Wang NC, Subačius H, Kadish AH, Goldberger JJ. Recovery of heart rate variability and ventricular repolarization indices following exercise. Ann Noninvasive Electrocardiol. 2012;17:349–360.
    1. Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, Chen J, He J. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation. 2016;134:441–450.
    1. Mortensen SP, Saltin B. Regulation of the skeletal muscle blood flow in humans. Exp Physiol. 2014;99:1552–1558.
    1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER, 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB, American Heart Association Statistics Committee and Stroke Statistics Subcommittee Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation. 2015;131:e29–322.
    1. Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, Macera CA, Castaneda-Sceppa C. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39:1435–1445.
    1. Ostchega Y, Yoon SS, Hughes J, Louis T. Hypertension awareness, treatment, and control--continued disparities in adults: United States, 2005–2006. NCHS Data Brief. 2008;(3):1–8.
    1. Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA, American College of Sports Medicine American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc. 2004;36:533–553.
    1. Pokorný J, Staněk V, Vrána M. Sudden cardiac death thirty years ago and at present. The role of autonomic disturbances in acute myocardial infarction revisited. Physiol Res. 2011;60:715–728.
    1. Purpura M, Rathmacher JA, Sharp MH, Lowery RP, Shields KA, Partl JM, Wilson JM, Jäger R. Oral adenosine-5’-triphosphate (ATP) administration increases postexercise ATP levels, muscle excitability, and athletic performance following a repeated sprint bout. J Am Coll Nutr. 2017;36:177–183.
    1. Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health. 2017;5:258.
    1. Stanley J, Peake JM, Buchheit M. Cardiac parasympathetic reactivation following exercise: implications for training prescription. Sports Med. 2013;43:1259–1277.
    1. Thayer JF, Yamamoto SS, Brosschot JF. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol. 2010;141:122–131.
    1. Thompson PD, Franklin BA, Balady GJ, Blair SN, Corrado D, Estes NA, 3rd, Fulton JE, Gordon NF, Haskell WL, Link MS, Maron BJ, Mittleman MA, Pelliccia A, Wenger NK, Willich SN, Costa F, American Heart Association Council on Nutrition, Physical Activity, and Metabolism; American Heart Association Council on Clinical Cardiology; American College of Sports Medicine Exercise and acute cardiovascular events placing the risks into perspective: a scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism and the Council on Clinical Cardiology. Circulation. 2007;115:2358–2368.
    1. Vanderlei LC, Pastre CM, Hoshi RA, Carvalho TD, Godoy MF. Basic notions of heart rate variability and its clinical applicability. Rev Bras Cir Cardiovasc. 2009;24:205–217.
    1. Vanderlei LC, Silva RA, Pastre CM, Azevedo FM, Godoy MF. Comparison of the Polar S810i monitor and the ECG for the analysis of heart rate variability in the time and frequency domains. Braz J Med Biol Res. 2008;41:854–859.
    1. Vinik AI, Maser RE, Ziegler D. Autonomic imbalance: prophet of doom or scope for hope? Diabet Med. 2011;28:643–651.
    1. Volders PG. Novel insights into the role of the sympathetic nervous system in cardiac arrhythmogenesis. Heart Rhythm. 2010;7:1900–1906.
    1. Wang S, Iring A, Strilic B, Albarrán Juárez J, Kaur H, Troidl K, Tonack S, Burbiel JC, Müller CE, Fleming I, Lundberg JO, Wettschureck N, Offermanns S. P2Y2 and Gq/G11 control blood pressure by mediating endothelial mechanotransduction. J Clin Invest. 2015;125:3077–3086.
    1. Wilson JM, Joy JM, Lowery RP, Roberts MD, Lockwood CM, Manninen AH, Fuller JC, De Souza EO, Baier SM, Wilson SM, Rathmacher JA. Effects of oral adenosine-5’-triphosphate supplementation on athletic performance, skeletal muscle hypertrophy and recovery in resistance- trained men. Nutr Metab (Lond) 2013;10:57.

Source: PubMed

Подписаться