The Effects of High-Intensity Interval Exercise and Hypoxia on Cognition in Sedentary Young Adults

Shengyan Sun, Paul D Loprinzi, Hongwei Guan, Liye Zou, Zhaowei Kong, Yang Hu, Qingde Shi, Jinlei Nie, Shengyan Sun, Paul D Loprinzi, Hongwei Guan, Liye Zou, Zhaowei Kong, Yang Hu, Qingde Shi, Jinlei Nie

Abstract

Background and Objectives: Limited research has evaluated the effects of acute exercise on cognition under different conditions of inspired oxygenation. Thus, the purpose of this study was to examine the effects of high-intensity interval exercise (HIE) under normoxia (inspired fraction of oxygen (FIO₂): 0.209) and moderate hypoxia (FIO₂: 0.154) on cognitive function. Design: A single-blinded cross-over design was used to observe the main effects of exercise and oxygen level, and interaction effects on cognitive task performance. Methods: Twenty inactive adults (10 males and 10 females, 19⁻27 years old) performed a cognitive task (i.e., the Go/No-Go task) before and immediately after an acute bout of HIE under normoxic and hypoxic conditions. The HIE comprised 10 repetitions of 6 s high-intensity cycling against 7.5% body weight interspersed with 30 s passive recovery. Heart rate, peripheral oxygen saturation (SpO₂) and rating of perceived exertion were monitored. Results: The acute bout of HIE did not affect the reaction time (p = 0.204, η² = 0.083) but the accuracy rate decreased significantly after HIE under both normoxic and hypoxic conditions (p = 0.001, η² = 0.467). Moreover, moderate hypoxia had no influence either on reaction time (p = 0.782, η² = 0.004) or response accuracy (p = 0.972, η² < 0.001). Conclusions: These results indicate that an acute session of HIE may impair response accuracy immediately post-HIE, without sacrificing reaction time. Meanwhile moderate hypoxia was found to have no adverse effect on cognitive function in inactive young adults, at least in the present study.

Keywords: Go/No-Go task; cognitive function; peripheral oxygen saturation; reaction time; response accuracy.

Conflict of interest statement

The authors declare that there are no conflicts of interest.

Figures

Figure 1
Figure 1
Changes in reaction time (A) and accuracy (B) subtracted from the baseline at resting at sea level on the Go/No-Go test before and after HIE under normoxia (20.9% O2) and hypoxia (15.2% O2). * p < 0.001 vs. Rest (pre-exercise). Tukey’s post hoc paired t-tests were employed.

References

    1. Zhang Y., Li C., Zou L., Liu X., Song W. The Effects of Mind-Body Exercise on Cognitive Performance in Elderly: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health. 2018;15:2791. doi: 10.3390/ijerph15122791.
    1. Loprinzi D., Frith E., Edwards K., Sng E., Ashpole N. The effects of exercise on memory function among young to middle-aged adults: Systematic review and recommendations for future research. Am. J. Health Promot. 2018;32:691–704. doi: 10.1177/0890117117737409.
    1. Loprinzi D., Blough J., Ryu S., Kang M. Experimental effects of exercise on memory function among mild cognitive impairment: Systematic review and meta-analysis. Phys. Sportsmed. 2018;22:1–6. doi: 10.1080/00913847.2018.1547087.
    1. Akatsuka K., Yamashiro K., Nakazawa S., Mitsuzono R., Maruyama A. Acute aerobic exercise influences the inhibitory process in the go/no-go task in humans. Neurosci. Lett. 2015;600:80–84. doi: 10.1016/j.neulet.2015.06.004.
    1. Zou L., Huang T., Tsang T., Pan Z., Wang C., Liu Y., Sun L., Wang H. Hard martial arts for cognitive function across the lifespan: A systematic review. Arch. Budo. 2018;14:41–58.
    1. Frith E., Sng E., Loprinzi D. Randomized controlled trial evaluating the temporal effects of high-intensity exercise on learning, short-term and long-term memory, and prospective memory. Eur. J. Neurosci. 2017;46:2557–2564. doi: 10.1111/ejn.13719.
    1. Erickson K.I., Voss M.W., Prakash R.S., Basak C., Szabo A., Chaddock L., White S.M. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA. 2011;108:3017–3022. doi: 10.1073/pnas.1015950108.
    1. Winter B., Breitenstein C., Mooren F.C., Voelker K., Fobker M., Lechtermann A., Floel A. High impact running improves learning. Neurobiol. Learn. Mem. 2007;87:597–609. doi: 10.1016/j.nlm.2006.11.003.
    1. Carro E., Trejo J.L., Busiguina S., Torres-Aleman I. Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J. Neurosci. 2001;21:5678–5684. doi: 10.1523/JNEUROSCI.21-15-05678.2001.
    1. Weston M., Taylor K.L., Batterham A.M., Hopkins W.G. Effects of low-volume high-intensity interval training (HIT) on fitness in adults: A meta-analysis of controlled and non-controlled trials. Sports Med. 2014;44:1005–1017. doi: 10.1007/s40279-014-0180-z.
    1. Kong Z., Sun S., Liu M., Shi Q. Short-Term High-Intensity Interval Training on Body Composition and Blood Glucose in Overweight and Obese Young Women. J. Diabetes Res. 2016;2:1–9. doi: 10.1155/2016/4073618.
    1. Trapp E.G., Chisholm D.J., Freund J., Boutcher S.H. The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. Int. J. Obes. 2008;32:684–691. doi: 10.1038/sj.ijo.0803781.
    1. Alves C.R., Tessaro V.H., Teixeira L.A., Murakava K., Roschel H., Gualano B., Takito M.Y. Influence of acute high-intensity aerobic interval exercise bout on selective attention and short-term memory tasks. Percept. Mot. Skills. 2014;118:63–72. doi: 10.2466/22.06.PMS.118k10w4.
    1. Tsukamoto S.T., Takenaka S., Tanaka D., Takeuchi T., Hamaoka T., Hashimoto T. Greater impact of acute high-intensity interval exercise on post-exercise executive function compared to moderate-intensity continuous exercise. Physiol. Behav. 2016;155:224–230. doi: 10.1016/j.physbeh.2015.12.021.
    1. Kashihara K., Maruyama T., Murota M., Nakahara Y. Positive effects of acute and moderate physical exercise on cognitive function. J. Physiol. Anthropol. 2009;28:155–164. doi: 10.2114/jpa2.28.155.
    1. Loprinzi D. Intensity-specific effects of acute exercise on human memory function: Considerations for the timing of exercise and the type of memory. Health Promot. Perspect. 2018;8:255–262. doi: 10.15171/hpp.2018.36.
    1. Kong Z., Zang Y., Hu Y. Normobaric hypoxia training causes more weight loss than normoxia training after a 4-week residential camp for obese young adults. Sleep Breath. 2014;18:591–597. doi: 10.1007/s11325-013-0922-4.
    1. Kong Z., Shi Q., Nie J., Tong T.K., Song L., Yi L., Hu Y. High-intensity interval training in normobaric hypoxia improves cardiorespiratory fitness in overweight chinese young women. Front. Physiol. 2017;8:175. doi: 10.3389/fphys.2017.00175.
    1. Navarrete-Opazo A., Mitchell G.S. Therapeutic potential of intermittent hypoxia: A matter of dose. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014;307:R1181–R1197. doi: 10.1152/ajpregu.00208.2014.
    1. Ochi G., Yamada Y., Hyodo K., Suwabe K., Fukuie T., Byun K., Soya H. Neural basis for reduced executive performance with hypoxic exercise. NeuroImage. 2018;171:75–83. doi: 10.1016/j.neuroimage.2017.12.091.
    1. Willis S.J., Alvarez L., Millet G.P., Borrani F. Changes in Muscle and Cerebral Deoxygenation and Perfusion during Repeated Sprints in Hypoxia to Exhaustion. Front. Physiol. 2017;8:846. doi: 10.3389/fphys.2017.00846.
    1. De Aquino-Lemos V., Santos R.V., Antunes H.K.M., Lira F.S., Bittar I.G.L., Caris A.V., Mello M.T. Acute physical exercise under hypoxia improves sleep, mood and reaction time. Physiol. Behav. 2016;154:90–99. doi: 10.1016/j.physbeh.2015.10.028.
    1. Turner C.E., Barker-Collo S.L., Connell C.J., Gant N. Acute hypoxic gas breathing severely impairs cognition and task learning in humans. Physiol. Behav. 2015;142:104–110. doi: 10.1016/j.physbeh.2015.02.006.
    1. Ando S., Hatamoto Y., Sudo M., Kiyonaga A., Tanaka H., Higaki Y. The effects of exercise under hypoxia on cognitive function. PLoS ONE. 2013;8:e63630. doi: 10.1371/journal.pone.0063630.
    1. Seo Y., Burns K., Fennell C., Kim J.H., Gunstad J., Glickman E., McDaniel J. The influence of exercise on cognitive performance in normobaric hypoxia. High Alt. Med. Biol. 2015;16:298–305. doi: 10.1089/ham.2015.0027.
    1. Czuba M., Waskiewicz Z., Zajac A., Poprzecki S., Cholewa J., Roczniok R. The effects of intermittent hypoxic training on aerobic capacity and endurance performance in cyclists. J. Sports Sci. Med. 2011;10:175. doi: 10.1055/s-0030-1268489.
    1. Meeuwsen T., Hendriksen I.J., Holewijn M. Training-induced increases in sea-level performance are enhanced by acute intermittent hypobaric hypoxia. Eur. J. Appl. Physiol. 2001;84:283–290. doi: 10.1007/s004210000363.
    1. Komiyama T., Sudo M., Higaki Y., Kiyonaga A., Tanaka H., Ando S. Does moderate hypoxia alter working memory and executive function during prolonged exercise? Physiol. Behav. 2015;139:290–296. doi: 10.1016/j.physbeh.2014.11.057.
    1. Smith M., Tallis J., Miller A., Clarke N.D., Guimaraes-Ferreira L., Duncan M.J. The effect of exercise intensity on cognitive performance during short duration treadmill Running. J. Hum. Kinet. 2016;51:27–35. doi: 10.1515/hukin-2015-0167.
    1. Hester R., Fassbender C., Garavan H. Individual differences in error processing: A review and reanalysis of three event-related fMRI studies using the GO/NOGO task. Cereb. Cortex. 2004;14:986–994. doi: 10.1093/cercor/bhh059.
    1. Heatherton T.F. Neuroscience of self and self-regulation. Annu. Rev. Psychol. 2011;62:363–390. doi: 10.1146/annurev.psych.121208.131616.
    1. Langenecker S.A., Zubieta J.K., Young E.A., Akil H., Nielson K.A. A task to manipulate attentional load, set-shifting, and inhibitory control: Convergent validity and test-retest reliability of the Parametric Go/No-Go Test. J. Clin. Exp. Neuropsychol. 2007;29:842–853. doi: 10.1080/13803390601147611.
    1. Duncan S., Schofield G., Duncan K., Hinkckson A. Effects of age, walking speed, and body composition on pedometer accuracy in children. Res. Q. Exerc. Sport. 2007;78:420–428. doi: 10.1080/02701367.2007.10599442.
    1. Gomez-Pinilla F., Hillman C. The influence of exercise on cognitive abilities. Compr. Physiol. 2013;3:403–428. doi: 10.1002/cphy.c110063.
    1. McMorris T., Hale J. Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: Meta-analytical investigation. Brain Cogn. 2012;80:338–351. doi: 10.1016/j.bandc.2012.09.001.
    1. Chang Y.K., Labban J., Gapin J., Etnier J.L. The effects of acute exercise on cognitive performance: A meta-analysis. Brain Res. 2012;1453:87–101. doi: 10.1016/j.brainres.2012.02.068.
    1. Byun K., Hyodo K., Suwabe K., Ochi G., Sakairi Y., Kato M., Soya H. Positive effect of acute mild exercise on executive function via arousal-related prefrontal activations: An fNIRS study. NeuroImage. 2014;98:336–345. doi: 10.1016/j.neuroimage.2014.04.067.
    1. Kamijo K., Nishihira Y., Hatta A., Kaneda T., Kida T., Higashiura T., Kuroiwa K. Changes in arousal level by differential exercise intensity. Clin. Neurophysiol. 2004;115:2693–2698. doi: 10.1016/j.clinph.2004.06.016.
    1. Komiyama T., Katayama K., Sudo M., Ishida K., Higaki Y., Ando S. Cognitive function during exercise under severe hypoxia. Sci. Rep. 2017;7:10000. doi: 10.1038/s41598-017-10332-y.
    1. Bärtsch P., Swenson E.R. Acute high-altitude illnesses. N. Engl. J. Med. 2013;368:2294–2302. doi: 10.1056/NEJMcp1214870.
    1. Virués-Ortega J., Buela-Casal G., Garrido E., Alcázar B. Neuropsychological functioning associated with high-altitude exposure. Neuropsychol. Rev. 2004;14:197–224. doi: 10.1007/s11065-004-8159-4.
    1. Curtelin D., Morales-Alamo D., Torres-Peralta R., Rasmussen P., Martin-Rincon M., Perez-Valera M., Sheel A.W. Cerebral blood flow, frontal lobe oxygenation and intra-arterial blood pressure during sprint exercise in normoxia and severe acute hypoxia in humans. J. Cereb. Blood Flow Metab. 2018;38:136–150. doi: 10.1177/0271678X17691986.
    1. Moraine J., Lamotte M., Berré J., Niset G., Leduc A., Naeijel R. Relationship of middle cerebral artery blood flow velocity to intensity during dynamic exercise in normal subjects. Eur. J. Appl. Physiol. Occup. Physiol. 1993;67:35–38. doi: 10.1007/BF00377701.

Source: PubMed

Подписаться