Quantitative muscle MRI as an assessment tool for monitoring disease progression in LGMD2I: a multicentre longitudinal study

Tracey A Willis, Kieren G Hollingsworth, Anna Coombs, Marie-Louise Sveen, Søren Andersen, Tanya Stojkovic, Michelle Eagle, Anna Mayhew, Paulo L de Sousa, Liz Dewar, Jasper M Morrow, Christopher D J Sinclair, John S Thornton, Kate Bushby, Hanns Lochmüller, Michael G Hanna, Jean-Yves Hogrel, Pierre G Carlier, John Vissing, Volker Straub, Tracey A Willis, Kieren G Hollingsworth, Anna Coombs, Marie-Louise Sveen, Søren Andersen, Tanya Stojkovic, Michelle Eagle, Anna Mayhew, Paulo L de Sousa, Liz Dewar, Jasper M Morrow, Christopher D J Sinclair, John S Thornton, Kate Bushby, Hanns Lochmüller, Michael G Hanna, Jean-Yves Hogrel, Pierre G Carlier, John Vissing, Volker Straub

Abstract

Background: Outcome measures for clinical trials in neuromuscular diseases are typically based on physical assessments which are dependent on patient effort, combine the effort of different muscle groups, and may not be sensitive to progression over short trial periods in slow-progressing diseases. We hypothesised that quantitative fat imaging by MRI (Dixon technique) could provide more discriminating quantitative, patient-independent measurements of the progress of muscle fat replacement within individual muscle groups.

Objective: To determine whether quantitative fat imaging could measure disease progression in a cohort of limb-girdle muscular dystrophy 2I (LGMD2I) patients over a 12 month period.

Methods: 32 adult patients (17 male;15 female) from 4 European tertiary referral centres with the homozygous c.826C>A mutation in the fukutin-related protein gene (FKRP) completed baseline and follow up measurements 12 months later. Quantitative fat imaging was performed and muscle fat fraction change was compared with (i) muscle strength and function assessed using standardized physical tests and (ii) standard T1-weighted MRI graded on a 6 point scale.

Results: There was a significant increase in muscle fat fraction in 9 of the 14 muscles analyzed using the quantitative MRI technique from baseline to 12 months follow up. Changes were not seen in the conventional longitudinal physical assessments or in qualitative scoring of the T₁w images.

Conclusions: Quantitative muscle MRI, using the Dixon technique, could be used as an important longitudinal outcome measure to assess muscle pathology and monitor therapeutic efficacy in patients with LGMD2I.

Conflict of interest statement

Competing Interests: Professor Vissing has given lectures for and received travel expenses from Genzyme. Professor Straub serves on the advisory boards of Genzyme and Acceleron, on the Joint Imaging Committee of Prosensa for which he receives research support, and has presented lectures for Genzyme. All other authors report no disclosures. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1. Quantitative fat fraction images of…
Figure 1. Quantitative fat fraction images of the thigh in LGMD2I patients showing the wide range of severity in fat replacement at baseline, from minimal involvement (a) to sparing of only gracilis and sartorius (e).
Figure 2. Quantitative fat fraction differences from…
Figure 2. Quantitative fat fraction differences from baseline to 12 month follow-up.
The box indicates the lower and upper quartiles, with the median change with time represented as the bar within the box. The bars enclose the outliers.
Figure 3. Quantitative fat fraction images at…
Figure 3. Quantitative fat fraction images at baseline in an individual patient (a – mid lower leg level, c – mid thigh level) and at 12 months follow-up (b – mid lower leg level, d – mid thigh level).
Analysis reveals an increase in fat fraction of the medial and lateral gastrocnemius, peroneus longus, vastus lateralis and medialis, semimembranosus, semitendinosus, sartorius and gracilis.
Figure 4. Quantitative fat fraction images at…
Figure 4. Quantitative fat fraction images at baseline in an individual patient (a – mid lower leg level, c – mid thigh level) and at 12 months follow-up (b – mid lower leg level, d – mid thigh level).
Analysis reveals an increase in fat fraction of the lateral and medial gastrocnemius, sartorius, gracilis, semitendinosus, rectus femoris and vastus lateralis.

References

    1. Walter MC, Petersen JA, Stucka R, Fischer D, Schröder R, et al. (2004) FKRP (826C>A) frequently causes limb-girdle muscular dystrophy in German patients. J Med Genet. 41: e50.
    1. Brockington M, Yuva Y, Prandini P, Brown SC, Torelli S, et al. (2001) Mutations in the fukutin related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum Mol Genet. 10: 2851–2859.
    1. Norwood FL, Harling C, Chinnery PF, Eagle M, Bushby K, et al. (2009) Prevalence of genetic muscle disease in Northern England: in-depth analysis of a muscle clinic population. Brain 132: 3175–86.
    1. Poppe M, Cree L, Bourke J, Eagle M, Anderson LV, et al. (2003) The phenotype of limb girdle muscular dystrophy 2I. Neurology 60: 1246–51.
    1. Bushby K, Beckmann JS (2003) The 105th ENMC sponsored workshop: pathogenesis in the non-sarcoglycan limb-girdle muscular dystrophies, Naarden, April 12–14, 2002. Neuromuscul Disord 13: 80–90.
    1. Bushby K, Beckmann J (1995) Diagnostic criteria for limb girdle muscular dystrophies:report of the ENMC workshop on limb girdle muscular dystrophies. Neuromuscul Disord 5: 71–74.
    1. Wicklund M, Hilton-Jones D (2003) The Limb Girdle Muscular Dystrophies. Genetic and phenotypic definition of a disputed entity. Neurology 60: 1230–31.
    1. Mercuri E, Jungbluth H, Muntoni F (2005) Muscle imaging in clinical practice: diagnostic value of muscle magnetic imaging in inherited neuromuscular disorders. Curr Opin Neurol 18: 126–37.
    1. Mercuri E, Pichiecchio A, Allsop J, Messina S, Pane M, et al. (2007) Muscle MRI in inherited neuromuscular disorders: past, present and future. Journal of Magnetic Resonance Imaging 25: 433–440.
    1. Lodi R, Muntoni F, Taylor J, Kumar S, Sewry CA, et al. (1997) Correlative MR Imaging and 31P-MR spectroscopy study in sarcoglycan deficient limb girdle muscular dystrophy. Neuromuscul Disord 7: 505–511.
    1. Younkin D, Berman P, Sladky J, Chee C, Bank W, et al. (1987) 31P Nuclear magnetic resonance studies in Duchenne Muscular dystrophy: age related metabolic changes. Neurology 37: 165–9.
    1. Sookhoo S, MacKinnon, Bushby K, Chinnery PF, Birchall D (2007) MRI for the demonstration of subclinical muscle involvement in muscular dystrophy. Clinical Radiology 62: 160–5.
    1. Dixon W (1984) Simple proton spectroscopic imaging. Radiology 153: 189–194.
    1. van der Ploeg RJ, Fidler V, Oosterhuis HJ (1991) Hand-held myometry: reference values. J Neurol Neurosurg Psychiatry 54: 244–247.
    1. Mazzone ES, Messina S, Vasco G, Main M, Eagle M, et al. (2009) Reliability of the North Star Ambulatory Assessment in a multicentric setting. Neuromuscul Disord 19: 458–61.
    1. Podsiadlo D, Richardson S (1991) The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 39: 142–148.
    1. Florence JM, van der Ploeg A, Clemens PR, Escolar DM, Laforet P, et al. (2008) Use of the 6 min walk test as an endpoint in clinical trials for neuromuscular diseases; Neuromuscul Disord. 18: 738–739.
    1. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories (2002) ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 166: 111–117.
    1. Coombs BD, Szumowski J, Coshow W (1997) Two-point Dixon technique for water-fat signal decomposition with B0 inhomogeneity correction. Magn Reson Med 38: 884–889.
    1. Glover GH, Schneider E (1991) Three-point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction. Magn Reson Med 18: 371–383.
    1. Mercuri E, Pichiecchio A, Counsell S, Allsop J, Cini C, et al. (2002) A short protocol for muscle MRI in children with muscular dystrophies. Eur J Paediatr Neurol 6: 305–307.
    1. Mercuri E, Talim B, Moghadaszadeh B, Petit N, Brockington M, et al. (2002) Clinical and imaging findings in six cases of congenital muscular dystrophy with rigid spine syndrome linked to chromosome 1p(RSMD1). Neuromuscul Disord 12: 631–638.
    1. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327: 307–310.

Source: PubMed

Подписаться