BioPro-RCMI-1505 trial: multicenter study evaluating the use of a biodegradable balloon for the treatment of intermediate risk prostate cancer by intensity modulated radiotherapy; study protocol

David Pasquier, Emilie Bogart, François Bonodeau, Thomas Lacornerie, Eric Lartigau, Igor Latorzeff, David Pasquier, Emilie Bogart, François Bonodeau, Thomas Lacornerie, Eric Lartigau, Igor Latorzeff

Abstract

Background: Prospective trials have demonstrated the advantage of dose-escalated radiotherapy for the biochemical and clinical control of intermediate risk prostate cancer. Dose escalation improves outcomes but increases risks of urinary and bowel toxicity. Recently the contribution of "spacers" positioned in the septum between the rectum and the prostate could improve the functional results of intensity modulated radiation therapy (IMRT). To date most of the evaluated devices were polyethylen glycol (PEG) and hyaluronic acid (HA). Men on the Spacer arm had decreased bowel toxicity and less decline in both urinary and bowel quality of life as compared to Control men in a randomized trial.

Methods: This is an interventional, multi-center study to evaluate the use of biodegradable inflatable balloon for patients with intermediate risk prostate cancer treated by IMRT (74 to 80 Gy, 2 Gy/fraction) with daily image guided radiotherapy.

Discussion: This multicenter prospective study will yield new data regarding dosimetric gain and implantation stages of Bioprotect balloon. Acute and late toxicities and quality of life will be registered too.

Trial registration: NCT02478112 , date of registration: 15/06/2015.

Keywords: Implantable biodegradable balloon; Intensity modulated radiotherapy; Prostate cancer; Rectal spacer.

Conflict of interest statement

Ethics approval and consent to participate

The study has been submitted and approved by regulatory authorities (ANSM; date of approval: 13/10/2016) and ethics committee (Centre de Protection des Personnes; date of approval: 13/10/2016). The study opened in September 2015.

A written informed consent will be obtained from the study participants.

There is an agreement between each participating center and the Centre Oscar Lambret. Each protocol version is signed by the principal investigator. We have a copy of each signed document.

In France, according to the current law, a protocol can be subjected to any regional Ethics Committee, even if no hospital of this region takes part to the trial. The choice is made according to the workload of every committee. The opinion of this Ethics Committee applies to all the national centers.

Competing interests

A part of the trial cost is financially supported by Aquilab. The study protocol has undergone peer-review by Aquilab.

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

    1. Zelefsky MJ, Pei X, Chou JF, Schechter M, Kollmeier M, Cox B, et al. Dose escalation for prostate cancer radiotherapy: predictors of long-term biochemical tumor control and distant metastases-free survival outcomes. Eur Urol. 2011;60(6):1133–1139. doi: 10.1016/j.eururo.2011.08.029.
    1. Dearnaley DP, Khoo VS, Norman AR, Meyer L, Nahum A, Tait D, et al. Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial. Lancet. 1999;353:267–272. doi: 10.1016/S0140-6736(98)05180-0.
    1. Beckendorf V, Guerif S, Le Prisé E, Cosset J-M, Bougnoux A, Chauvet B, et al. 70 Gy versus 80 Gy in localized prostate cancer: 5-year results of GETUG 06 randomized trial. Int J Radiat Oncol Biol Phys. 2011;80:1056–1063. doi: 10.1016/j.ijrobp.2010.03.049.
    1. Peeters ST, Heemsbergen WD, Koper PC, van Putten WL, Slot A, Dielwart MF, et al. Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J Clin Oncol. 2006;24:1990–1996. doi: 10.1200/JCO.2005.05.2530.
    1. Cahlon O, Hunt M, Zelefsky MJ. Intensity-modulated radiation therapy: supportive data for prostate cancer. Semin Radiat Oncol. 2008;18:48–57. doi: 10.1016/j.semradonc.2007.09.007.
    1. Zelefsky MJ, Kollmeier M, Cox B, Fidaleo A, Sperling D, Pei X, et al. Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer. Int J Radiat Oncol Biol Phys. 2012;84:125–129. doi: 10.1016/j.ijrobp.2011.11.047.
    1. Huang EH, Pollack A, Levy L, Starkschall G, Dong L, Rosen I, et al. Late rectal toxicity: dose-volume effects of conformal radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2002;54:1314–1321. doi: 10.1016/S0360-3016(02)03742-2.
    1. Mok G, Benz E, Vallee J-P, Miralbell R, Zilli T. Optimization of radiation therapy techniques for prostate cancer with prostate-rectum spacers: a systematic review. Int J Radiat Oncol Biol Phys. 2014;90:278–288. doi: 10.1016/j.ijrobp.2014.06.044.
    1. Mariados N, Sylvester J, Shah D, Karsh L, Hudes R, Beyer D, et al. Hydrogel spacer prospective multicenter randomized controlled pivotal trial: dosimetric and clinical effects of perirectal spacer application in men undergoing prostate image guided intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2015;92:971–977. doi: 10.1016/j.ijrobp.2015.04.030.
    1. Hamstra DA, Mariados N, Sylvester J, Shah D, Karsh L, Hudes R, et al. Continued benefit to rectal separation for prostate RT: final results of a phase III trial. Int J Radiat Oncol Biol Phys. 2017;97:976–985. doi: 10.1016/j.ijrobp.2016.12.024.
    1. Chapet O, Udrescu C, Tanguy R, Ruffion A, Fenoglietto P, Sotton MP, et al. Dosimetric implications of an injection of hyaluronic acid for preserving the rectal wall in prostate stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys. 2014;88:425–432. doi: 10.1016/j.ijrobp.2013.10.039.
    1. Ben-Yosef R, Paz A, Levy Y, Alani S, Muncher Y, Shohat S, et al. A novel device for protecting rectum during prostate cancer irradiation: in vivo data on a large mammal model. J Urol. 2009;181:1401–1406. doi: 10.1016/j.juro.2008.11.010.
    1. Gez E, Cytron S, Yosef RB, London D, Corn BW, Alani S, et al. Application of an interstitial and biodegradable balloon system for prostate-rectum separation during prostate cancer radiotherapy: a prospective multi-center study. Radiat Oncol. 2013;8:96. doi: 10.1186/1748-717X-8-96.
    1. Melchert C, Gez E, Bohlen G, Scarzello G, Koziol I, Anscher M, et al. Interstitial biodegradable balloon for reduced rectal dose during prostate radiotherapy: results of a virtual planning investigation based on the pre- and post-implant imaging data of an international multicenter study. Radiother Oncol. 2013;106:210–214. doi: 10.1016/j.radonc.2013.01.007.

Source: PubMed

Подписаться