Neutrophil heterogeneity in health and disease: a revitalized avenue in inflammation and immunity

Martina Beyrau, Jennifer Victoria Bodkin, Sussan Nourshargh, Martina Beyrau, Jennifer Victoria Bodkin, Sussan Nourshargh

Abstract

Leucocytes form the principal cellular components of immunity and inflammation, existing as multiple subsets defined by distinct phenotypic and functional profiles. To date, this has most notably been documented for lymphocytes and monocytes. In contrast, as neutrophils are traditionally considered, to be short-lived, terminally differentiated cells that do not re-circulate, the potential existence of distinct neutrophil subsets with functional and phenotypic heterogeneity has not been widely considered or explored. A growing body of evidence is now challenging this scenario, and there is significant evidence for the existence of different neutrophil subsets under both physiological and pathological conditions. This review will summarize the key findings that have triggered a renewed interest in neutrophil phenotypic changes, both in terms of functional implications and consequences within disease models. Special emphasis will be placed on the potential pro- and anti-inflammatory roles of neutrophil subsets, as indicated by the recent works in models of ischaemia-reperfusion injury, trauma, cancer and sepsis.

Keywords: inflammation; neutrophil; neutrophil phenotype; neutrophil plasticity; neutrophil subset.

Figures

Figure 1.
Figure 1.
Changes in neutrophil phenotype post-TEM. Summarized are molecular and functional changes reported in conjunction with neutrophil TEM/tissue infiltration and neutrophil reverse transendothelial migration through endothelial cells. The latter may involve movement of neutrophils within the transmigration pore in an abluminal-to-luminal direction or, under extreme conditions, migration from the subendothelial space back into the vascular lumen. FasL, Fas ligand; NET, neutrophil extracellular trap; TEM, transendothelial cell migration; TNF-R1, tumour necrosis factor receptor type 1.

References

    1. Hajdu SI. 2003. A note from history: the discovery of blood cells. Ann. Clin. Lab. Sci. 33, 237–238
    1. Miller JFAP. 2002. The discovery of thymus function and of thymus-derived lymphocytes. Immunol. Rev. 185, 7–1410.1034/j.1600-065X.2002.18502.x ()
    1. Bluestone JA, Mackay CR, O'Shea JJ, Stockinger B. 2009. The functional plasticity of T cell subsets. Nat. Rev. Immunol. 9, 811–81610.1038/nri2654 ()
    1. Matthias P, Rolink AG. 2005. Transcriptional networks in developing and mature B cells. Nat. Rev. Immunol. 5, 497–50810.1038/nri1633 ()
    1. Hirahara K, Vahedi G, Ghoreschi K, Yang X-P, Nakayamada S, Kanno Y, O'Shea JJ, Laurence A. 2011. Helper T-cell differentiation and plasticity: insights from epigenetics. Immunology 134, 235–24510.1111/j.1365-2567.2011.03483.x ()
    1. Auffray C, Sieweke MH, Geissmann F. 2009. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 27, 669–69210.1146/annurev.immunol.021908.132557 ()
    1. Pillay J, den Braber I, Vrisekoop N, Kwast LM, de Boer RJ, Borghans JAM, Tesselaar K, Koenderman L. 2010. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood 116, 625–62710.1182/blood-2010-01-259028 ()
    1. Chtanova T, et al. 2008. Dynamics of neutrophil migration in lymph nodes during infection. Immunity 29, 487–49610.1016/j.immuni.2008.07.012 ()
    1. Nathan C. 2006. Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol. 6, 173–18210.1038/nri1785 ()
    1. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM. 2009. Polarization of tumor-associated neutrophil phenotype by TGF-beta: ‘N1’ versus ‘N2’ TAN. Cancer Cell 16, 183–19410.1016/j.ccr.2009.06.017 ()
    1. Tsuda Y, Takahashi H, Kobayashi M, Hanafusa T, Herndon DN, Suzuki F. 2004. Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity 21, 215–22610.1016/j.immuni.2004.07.006 ()
    1. Pillay J, et al. 2012. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J. Clin. Invest. 122, 327–33610.1172/JCI57990 ()
    1. Denny MF, Yalavarthi S, Zhao W, Thacker SG, Anderson M, Sandy AR, McCune WJ, Kaplan MJ. 2010. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J. Immunol. 184, 3284–329710.4049/jimmunol.0902199 ()
    1. Pillay J, et al. 2010. Functional heterogeneity and differential priming of circulating neutrophils in human experimental endotoxemia. J. Leukoc. Biol. 88, 211–22010.1189/jlb.1209793 ()
    1. Mathias JR, Perrin BJ, Liu T, Kanki J, Look AT, Huttenlocher A. 2006. Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J. Leukoc. Biol. 80, 1281–128810.1189/jlb.0506346 ()
    1. Woodfin A, et al. 2011. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nat. Immunol. 12, 761–76910.1038/ni.2062 ()
    1. Buckley CD, et al. 2006. Identification of a phenotypically and functionally distinct population of long-lived neutrophils in a model of reverse endothelial migration. J. Leukoc. Biol. 79, 303–31110.1189/jlb.0905496 ()
    1. Gallin JI. 1984. Human neutrophil heterogeneity exists, but is it meaningful? Blood 63, 977–983
    1. Bao Y, Cao X. 2011. Revisiting the protective and pathogenic roles of neutrophils: Ly-6G is key! Eur. J. Immunol. 41, 2535–253810.1002/eji.201141979 ()
    1. Chen L, Li H, Liu W, Zhu J, Zhao X, Wright E, Cao L, Ding I, Rodgers GP. 2011. Olfactomedin 4 suppresses prostate cancer cell growth and metastasis via negative interaction with cathepsin D and SDF-1. Carcinogenesis 32, 986–99410.1093/carcin/bgr065 ()
    1. Clemmensen SN, et al. 2011. Olfactomedin 4 defines a subset of human neutrophils. J. Leukoc. Biol. 91, 1–610.1189/jlb.0811417 ()
    1. Liu W, Yan M, Liu Y, McLeish KR, Coleman WG, Rodgers GP. 2012. Olfactomedin 4 inhibits cathepsin C-mediated protease activities, thereby modulating neutrophil killing of Staphylococcus aureus and Escherichia coli in mice. J. Immunol. 189, 2460–246710.4049/jimmunol.1103179 ()
    1. Stroncek DF. 2007. Neutrophil-specific antigen HNA-2a, NB1 glycoprotein, and CD177. Curr. Opin. Hematol. 14, 688–69310.1097/MOH.0b013e3282efed9e ()
    1. Hu N, Westra J, Huitema MG, Bijl M, Brouwer E, Stegeman CA, Heeringa P, Limburg PC, Kallenberg CGM. 2009. Coexpression of CD177 and membrane proteinase 3 on neutrophils in antineutrophil cytoplasmic autoantibody-associated systemic vasculitis: anti-proteinase 3-mediated neutrophil activation is independent of the role of CD177-expressing neutrophils. Arthritis Rheum. 60, 1548–155710.1002/art.24442 ()
    1. Bauer S, Abdgawad M, Gunnarsson L, Segelmark M, Tapper H, Hellmark T. 2007. Proteinase 3 and CD177 are expressed on the plasma membrane of the same subset of neutrophils. J. Leukoc. Biol. 81, 458–46410.1189/jlb.0806514 ()
    1. Kuckleburg CJ, Tilkens SB, Santoso S, Newman PJ. 2012. Proteinase 3 contributes to transendothelial migration of NB1-positive neutrophils. J. Immunol. 188, 2419–242610.4049/jimmunol.1102540 ()
    1. Nourshargh S, Hordijk PL, Sixt M. 2010. Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nat. Rev. Mol. Cell Biol. 11, 366–37810.1038/nrm2889 ()
    1. Nourshargh S, Marelli-Berg FM. 2005. Transmigration through venular walls: a key regulator of leukocyte phenotype and function. Trends Immunol. 26, 157–16510.1016/j.it.2005.01.006 ()
    1. Hartl D, et al. 2008. Infiltrated neutrophils acquire novel chemokine receptor expression and chemokine responsiveness in chronic inflammatory lung diseases. J. Immunol. 181, 8053–8067
    1. Dixon G, Elks PM, Loynes CA, Whyte MKB, Renshaw SA. 2012. A method for the in vivo measurement of zebrafish tissue neutrophil lifespan. ISRN Hematol. 2012, 915868.10.5402/2012/915868 ()
    1. McGettrick HM, Lord JM, Wang K, Rainger GE, Buckley CD, Nash GB. 2006. Chemokine- and adhesion-dependent survival of neutrophils after transmigration through cytokine-stimulated endothelium. J. Leukoc. Biol. 79, 779–78810.1189/jlb.0605350 ()
    1. Allen C, Thornton P, Denes A, McColl BW, Pierozynski A, Monestier M, Pinteaux E, Rothwell NJ, Allan SM. 2012. Neutrophil cerebrovascular transmigration triggers rapid neurotoxicity through release of proteases associated with decondensed DNA. J. Immunol. 189, 381–39210.4049/jimmunol.1200409 ()
    1. Randolph GJ, Furie MB. 1996. Mononuclear phagocytes egress from an in vitro model of the vascular wall by migrating across endothelium in the basal to apical direction: role of intercellular adhesion molecule 1 and the CD11/CD18 integrins. J. Exp. Med. 183, 451–46210.1084/jem.183.2.451 ()
    1. Bradfield PF, et al. 2007. JAM-C regulates unidirectional monocyte transendothelial migration in inflammation. Blood 110, 2545–255510.1182/blood-2007-03-078733 ()
    1. Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER. 2010. Neutrophil kinetics in health and disease. Trends Immunol. 31, 318–32410.1016/j.it.2010.05.006 ()
    1. Tofts PS, Chevassut T, Cutajar M, Dowell NG, Peters AM. 2011. Doubts concerning the recently reported human neutrophil lifespan of 5.4 days. Blood 117, 6050–6052 (author reply 6053–6054) ()
    1. Li KW, Turner SM, Emson CL, Hellerstein MK, Dale DC. 2011. Deuterium and neutrophil kinetics. Blood 117, 6052–6053 (author reply 6053–6054).10.1182/blood-2010-12-322271 ()
    1. Teich JM, Young IT, Sher SE, Lee JS. 1979. Transformation of nuclear morphology during cellular maturation. J. Histochem. Cytochem. 27, 193–19810.1177/27.1.438500 ()
    1. Sanchez JA, Wangh LJ. 1999. New insights into the mechanisms of nuclear segmentation in human neutrophils. J. Cell. Biochem. 73, 1–1010.1002/(SICI)1097-4644(19990401)73:1<1::AID-JCB1>;2-S ()
    1. Li JL, Ng LG. 2012. Peeking into the secret life of neutrophils. Immunol. Res. 53, 168–18110.1007/s12026-012-8292-8 ()
    1. Rankin SM. 2010. The bone marrow: a site of neutrophil clearance. J. Leukoc. Biol. 88, 241–25110.1189/jlb.0210112 ()
    1. Weisel KC, Bautz F, Seitz G, Yildirim S, Kanz L, Möhle R. 2009. Modulation of CXC chemokine receptor expression and function in human neutrophils during aging in vitro suggests a role in their clearance from circulation. Mediators Inflamm. 2009, 790174.10.1155/2009/790174 ()
    1. Martin C, Burdon PCE, Bridger G, Gutierrez-Ramos JC, Williams TJ, Rankin SM. 2003. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 19, 583–59310.1016/S1074-7613(03)00263-2 ()
    1. Whyte MK, Meagher LC, MacDermot J, Haslett C. 1993. Impairment of function in aging neutrophils is associated with apoptosis. J. Immunol. 150, 5124–5134
    1. Suratt BT, Young SK, Lieber J, Nick JA, Henson PM, Worthen GS. 2001. Neutrophil maturation and activation determine anatomic site of clearance from circulation. Am. J. Physiol. Lung Cell. Mol. Physiol. 281, L913–L921
    1. Scotland RS, Stables MJ, Madalli S, Watson P, Gilroy DW. 2011. Sex differences in resident immune cell phenotype underlie more efficient acute inflammatory responses in female mice. Blood 118, 5918–592710.1182/blood-2011-03-340281 ()
    1. Bartlett JA, Schleifer SJ, Demetrikopoulos MK, Delaney BR, Shiflett SC, Keller SE. 1998. Immune function in healthy adolescents. Clin. Diagn. Lab. Immunol. 5, 105–113
    1. Klink M, Bednarska K, Blus E, Kielbik M, Sulowska Z. 2012. Seasonal changes in activities of human neutrophils in vitro. Inflamm. Res. 61, 11–1610.1007/s00011-011-0382-x ()
    1. Nussbaum C, Sperandio M. 2011. Innate immune cell recruitment in the fetus and neonate. J. Reprod. Immunol. 90, 74–8110.1016/j.jri.2011.01.022 ()
    1. Dorshkind K, Montecino-Rodriguez E, Signer RAJ. 2009. The ageing immune system: is it ever too old to become young again? Nat. Rev. Immunol. 9, 57–6210.1038/nri2471 ()
    1. Solana R, Pawelec G, Tarazona R. 2006. Aging and innate immunity. Immunity 24, 491–49410.1016/j.immuni.2006.05.003 ()
    1. Hajishengallis G. 2010. Too old to fight? Aging and its toll on innate immunity. Mol. Oral Microbiol. 25, 25–3710.1111/j.2041-1014.2009.00562.x ()
    1. Lencel P, Magne D. 2011. Inflammaging: the driving force in osteoporosis? Med. Hypotheses 76, 317–32110.1016/j.mehy.2010.09.023 ()
    1. Nomellini V, Gomez CR, Gamelli RL, Kovacs EJ. 2009. Aging and animal models of systemic insult: trauma, burn, and sepsis. Shock 31, 11–2010.1097/SHK.0b013e318180f508 ()
    1. Gomez CR, Hirano S, Cutro BT, Birjandi S, Baila H, Nomellini V, Kovacs EJ. 2007. Advanced age exacerbates the pulmonary inflammatory response after lipopolysaccharide exposure. Crit. Care Med. 35, 246–25110.1097/01.CCM.0000251639.05135.E0 ()
    1. Park Y, Hirose R, Coatney JL, Ferrell L, Behrends M, Roberts JP, Serkova NJ, Niemann CU. 2007. Ischemia–reperfusion injury is more severe in older versus young rat livers. J. Surg. Res. 137, 96–10210.1016/j.jss.2006.08.013 ()
    1. Solana R, Tarazona R, Gayoso I, Lesur O, Dupuis G, Fulop T. 2012. Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin. Immunol.10.1016/j.smim.2012.04.008 ()
    1. Walker AE, Seibert SM, Donato AJ, Pierce GL, Seals DR. 2010. Vascular endothelial function is related to white blood cell count and myeloperoxidase among healthy middle-aged and older adults. Hypertension 55, 363–36910.1161/HYPERTENSIONAHA.109.145870 ()
    1. Perskin MH, Cronstein BN. 1992. Age-related changes in neutrophil structure and function. Mech. Ageing Dev. 64, 303–31310.1016/0047-6374(92)90086-s ()
    1. Lord JM, Butcher S, Killampali V, Lascelles D, Salmon M. 2001. Neutrophil ageing and immunesenescence. Mech. Ageing Dev. 122, 1521–153510.1016/S0047-6374(01)00285-8 ()
    1. Fulop T, Larbi A, Douziech N, Fortin C, Guérard K-P, Lesur O, Khalil A, Dupuis G. 2004. Signal transduction and functional changes in neutrophils with aging. Aging Cell 3, 217–22610.1111/j.1474-9728.2004.00110.x ()
    1. Valente SA, et al. 2009. Immunologic function in the elderly after injury—the neutrophil and innate immunity. J. Trauma 67, 968–97410.1097/TA.0b013e3181b84279 ()
    1. De Martinis M, Modesti M, Ginaldi L. 2004. Phenotypic and functional changes of circulating monocytes and polymorphonuclear leucocytes from elderly persons. Immunol. Cell Biol. 82, 415–42010.1111/j.0818-9641.2004.01242.x ()
    1. Nomellini V, Brubaker AL, Mahbub S, Palmer JL, Gomez CR, Kovacs EJ. 2012. Dysregulation of neutrophil CXCR2 and pulmonary endothelial ICAM-1 promotes age-related pulmonary inflammation. Aging Dis. 3, 234–247
    1. Hall JA, Chinn RM, Vorachek WR, Gorman ME, Jewell DE. 2010. Aged beagle dogs have decreased neutrophil phagocytosis and neutrophil-related gene expression compared to younger dogs. Vet. Immunol. Immunopathol. 137, 130–13510.1016/j.vetimm.2010.05.002 ()
    1. Arranz L, Lord JM, De la Fuente M. 2010. Preserved ex vivo inflammatory status and cytokine responses in naturally long-lived mice. Age 32, 451–46610.1007/s11357-010-9151-y ()
    1. Gasparoto TH, de Oliveira CE, Vieira NA, Porto VC, Cunha FQ, Garlet GP, Campanelli AP, Lara VS. 2012. Activation pattern of neutrophils from blood of elderly individuals with Candida-related denture stomatitis. Eur. J. Clin. Microbiol. Infect. Dis. 31, 1271–127710.1007/s10096-011-1439-z ()
    1. Larbi A, Douziech N, Fortin C, Linteau A, Dupuis G, Fulop T. 2005. The role of the MAPK pathway alterations in GM-CSF modulated human neutrophil apoptosis with aging. Immun. Ageing 2, 6.10.1186/1742-4933-2-6 ()
    1. Yamada S, Melder RJ, Leunig M, Ohkubo C, Jain RK. 1995. Leukocyte rolling increases with age. Blood 86, 4707–4708
    1. Villanueva E, et al. 2011. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J. Immunol. 187, 538–55210.4049/jimmunol.1100450 ()
    1. Fridlender ZG, Albelda SM. 2012. Tumor-associated neutrophils: friend or foe? Carcinogenesis 33, 949–95510.1093/carcin/bgs123 ()
    1. Fridlender ZG, et al. 2012. Transcriptomic analysis comparing tumor-associated neutrophils with granulocytic myeloid-derived suppressor cells and normal neutrophils. PLoS ONE 7, e31524.10.1371/journal.pone.0031524 ()
    1. Piccard H, Muschel RJ, Opdenakker G. 2012. On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Crit. Rev. Oncol. Hematol. 82, 296–30910.1016/j.critrevonc.2011.06.004 ()
    1. De Santo C, Arscott R, Booth S, Karydis I, Jones M, Asher R, Salio M, Middleton M, Cerundolo V. 2010. Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A. Nat. Immunol. 11, 1039–104610.1038/ni.1942 ()
    1. Mencacci A, Montagnoli C, Bacci A, Cenci E, Pitzurra L, Spreca A, Kopf M, Sharpe AH, Romani L. 2002. CD80+Gr–1+ myeloid cells inhibit development of antifungal Th1 immunity in mice with candidiasis. J. Immunol. 169, 3180–3190
    1. Tosello Boari J, Amezcua Vesely MC, Bermejo DA, Ramello MC, Montes CL, Cejas H, Gruppi A, Acosta Rodríguez EV. 2012. IL-17RA signaling reduces inflammation and mortality during Trypanosoma cruzi infection by recruiting suppressive IL-10-producing neutrophils. PLoS Pathog. 8, e1002658.10.1371/journal.ppat.1002658 ()
    1. Fischer MA, et al. 2011. CD11b+, Ly6G+ cells produce type I interferon and exhibit tissue protective properties following peripheral virus infection. PLoS Pathog. 7, e1002374.10.1371/journal.ppat.1002374 ()
    1. Krause PJ, Malech HL, Kristie J, Kosciol CM, Herson VC, Eisenfeld L, Pastuszak WT, Kraus A, Seligmann B. 1986. Polymorphonuclear leukocyte heterogeneity in neonates and adults. Blood 68, 200–204
    1. Spiekermann K, Roesler J, Elsner J, Lohmann-Matthes ML, Welte K, Malech H, Gallin JI, Emmendoerffer A. 1996. Identification of the antigen recognized by the monoclonal antibody 31D8. Exp. Hematol. 24, 453–458
    1. Hotchkiss RS, Coopersmith CM, McDunn JE, Ferguson TA. 2009. The sepsis seesaw: tilting toward immunosuppression. Nat. Med. 15, 496–49710.1038/nm0509-496 ()
    1. Bochicchio GV, Napolitano LM, Joshi M, McCarter RJ, Scalea TM. 2001. Systemic inflammatory response syndrome score at admission independently predicts infection in blunt trauma patients. J. Trauma 50, 817–820 (
    1. Visser T, Pillay J, Pickkers P, Leenen LPH, Koenderman L. 2012. Homology in systemic neutrophil response induced by human experimental endotoxemia and by trauma. Shock 37, 145–15110.1097/SHK.0b013e31823f14a4 ()
    1. Youn J-I, Gabrilovich DI. 2010. The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur. J. Immunol. 40, 2969–297510.1002/eji.201040895 ()
    1. Knight JS, Kaplan MJ. 2012. Lupus neutrophils: ‘NET’ gain in understanding lupus pathogenesis. Curr. Opin. Rheumatol. 24, 441–45010.1097/BOR.0b013e3283546703 ()

Source: PubMed

Подписаться