Assessment of cardiac ischaemia and viability: role of cardiovascular magnetic resonance

Juerg Schwitter, Andrew E Arai, Juerg Schwitter, Andrew E Arai

Abstract

Over the past years, cardiovascular magnetic resonance (CMR) has proven its efficacy in large clinical trials, and consequently, the assessment of function, viability, and ischaemia by CMR is now an integrated part of the diagnostic armamentarium in cardiology. By combining these CMR applications, coronary artery disease (CAD) can be detected in its early stages and this allows for interventions with the goal to reduce complications of CAD such as infarcts and subsequently chronic heart failure (CHF). As the CMR examinations are robust and reproducible and do not expose patients to radiation, they are ideally suited for repetitive studies without harm to the patients. Since CAD is a chronic disease, the option to monitor CAD regularly by CMR over many decades is highly valuable. Cardiovascular magnetic resonance also progressed recently in the setting of acute coronary syndromes. In this situation, CMR allows for important differential diagnoses. Cardiovascular magnetic resonance also delineates precisely the different tissue components in acute myocardial infarction such as necrosis, microvascular obstruction (MVO), haemorrhage, and oedema, i.e. area at risk. With these features, CMR might also become the preferred tool to investigate novel treatment strategies in clinical research. Finally, in CHF patients, the versatility of CMR to assess function, flow, perfusion, and viability and to characterize tissue is helpful to narrow the differential diagnosis and to monitor treatment.

Figures

Figure 1
Figure 1
A schematic explains the various time points of image acquisition relative to contrast medium administration to assess ischaemia and necrosis/scar tissue. Red line corresponds to normal non-ischaemic myocardium, blue line the ischaemic myocardium, black line the necrotic tissue in the acute myocardial infarction (fibrotic tissue in chronic myocardial infarction), and purple line the tissue with microvascular obstruction (MVO).
Figure 2
Figure 2
Example of a 70-year-old female patient with atypical chest pain and mild dyspnoea during exercise. Risk factors were hypercholesterolaemia and diabetes. The patient performed at 100% of predicted workload without symptoms and with a normal stress electrocardiogram (mildly ascending 0.07 mV ST depression) and without arrhythmias. Perfusion-cardiovascular magnetic resonance detects severe ischaemia in all vascular territories. Coronary angiography confirmed a triple-vessel disease and the patient was treated successfully by multiple stenting.
Figure 3
Figure 3
Diagnostic performance of perfusion-cardiovascular magnetic resonance to detect coronary artery disease (defined as ≥50% stenosis in invasive coronary angiography) in comparison vs. SPECT. Performance of SPECT in MR-IMPACT is comparable to those of previous multicentre SPECT trials (given as squares and circles) reported by Zaret et al., Van Train et al., and Hendel et al. Better performance is obtained with perfusion-cardiovascular magnetic resonance vs. SPECT [P < 0.013, in multivessel disease (MVD) P < 0.006]. Modified from Schwitter et al. with permission of Oxford Press.
Figure 4
Figure 4
Prediction of cardiac death and non-fatal myocardial infarction by assessment of ischaemia in seven large studies comprising more than 20 000 patients. In patients without ischaemia, outcome is excellent.
Figure 5
Figure 5
Viability assessment by late gadolinium enhancement (A) demonstrates the absence of necrosis (lack of bright tissue) in the hypo-akinetic anterior wall [end-systolic image in (B)]. As expected, the follow-up assessment by cardiovascular magnetic resonance demonstrates a major recovery of contractile function in the anterior wall [(C) end-systolic images at follow-up]. The late gadolinium enhancement technique is also sensitive for detection of thrombus, which is attached to a small necrotic (=bright) area in the apex of the left ventricle (A).
Figure 6
Figure 6
Tissue characterization by cardiovascular magnetic resonance. On the left-hand side (A and C), late gadolinium enhancement is applied to delineate tissue necrosis as bright areas (red arrows). In the canine experiment, a small subendocardial necrosis is detected, whereas in the patient with acute myocardial infarction (C), a dark core in the centre of necrosis is indicating the presence of microvascular obstruction. On the right, T2-weighted images show increased signal in the myocardium, indicating the presence of oedema, which corresponds to the area at risk. In the patient (D), dark areas in the centre of oedematous tissue indicate haemorrhage. The oedematous tissue [bright on T2-weighted images in (B) and (D)], i.e. the area at risk minus the necrotic tissue [in (A) and (C), respectively] yields the amount of salvaged myocardium.
Figure 7
Figure 7
Performance of different imaging techniques to detect acute coronary syndromes in acute chest pain patients. Data are derived for cardiovascular magnetic resonance from references,– for computed tomographic angiography from references,– and for SPECT from references.,–

References

    1. Fox K, Garcia M, Ardissino D, Buszman P, Camici PG, Crea F, Daly C, De Backer G, Hjemdahl P, Lopez-Sendon J, Marco J, Morais J, Pepper J, Sechtem U, Simoons M, Thygesen K. Guidelines on the management of stable angina pectoris. Eur Heart J. 2006 .
    1. Heart disease and stroke statistics: update 2009. Circulation. 2009;119:e1–e161.
    1. Schwitter J. Myocardial perfusion in ischemic heart disease. In: Higgins CB, de Roos A, editors. MRI and CT of the Cardiovascular System. Philadelphia, PA: Lippincott Williams and Wilkins; 2005.
    1. Schwitter J. Myocardial perfusion. J Magn Reson Imaging. 2006;24:953–963.
    1. Schwitter J. CMR Update. 1st ed. Zurich: J. Schwitter; 2008. pp. 1–240. .
    1. Schwitter J, Nanz D, Kneifel S, Bertschinger K, Buchi M, Knusel PR, Marincek B, Luscher TF, von Schulthess GK. Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation. 2001;103:2230–2235.
    1. Plein S, Radjenovic A, Ridgway JP, Barmby D, Greenwood JP, Ball SG, Sivananthan MU. Coronary artery disease: myocardial perfusion MR imaging with sensitivity encoding versus conventional angiography. Radiology. 2005;235:423–430.
    1. Paetsch I, Jahnke C, Wahl A, Gebker R, Neuss M, Fleck E, Nagel E. Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation. 2004;110:835–842.
    1. Plein S, Kozerke S, Suerder D, Luescher TF, Greenwood JP, Boesiger P, Schwitter J. High spatial resolution myocardial perfusion cardiac magnetic resonance for the detection of coronary artery disease. Eur Heart J. 2008;29:2148–2155.
    1. Schwitter J, Wacker C, van Rossum A, Lombardi M, Al-Saadi N, Ahlstrom H, Dill T, Larsson HB, Flamm S, Marquardt M, Johansson L. MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J. 2008;29:480–489.
    1. Bertschinger KM, Nanz D, Buechi M, Luescher TF, Marincek B, von Schulthess GK, Schwitter J. Magnetic resonance myocardial first-pass perfusion imaging: parameter optimization for signal response and cardiac coverage. J Magn Reson Imaging. 2001;14:556–562.
    1. Giang T, Nanz D, Coulden R, Friedrich M, Graves M, Al-Saadi N, Lüscher T, von Schulthess G, Schwitter J. Detection of coronary artery disease by magnetic resonance myocardial perfusion imaging with various contrast medium doses: first European multicenter experience. Eur Heart J. 2004;25:1657–1665.
    1. Al-Saadi N, Nagel E, Gross M, Bornstedt A, Schnackenburg B, Klein C, Klimek W, Oswald H, Fleck E. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation. 2000;101:1379–1383.
    1. Nagel E, Klein C, Paetsch I, Hettwer S, Schnackenburg B, Wegscheider K, Fleck E. Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation. 2003;108:432–437.
    1. Ishida N, Sakuma H, Motoyasu M, Okinaka T, Isaka N, Nakano T, Takeda K. Noninfarcted myocardium: correlation between dynamic first-pass contrast-enhanced myocardial MR imaging and quantitative coronary angiography. Radiology. 2003;229:209–216.
    1. Kitagawa K, Sakuma H, Nagata M, Okuda S, Hirano M, Tanimoto A, Matsusako M, Lima JA, Kuribayashi S, Takeda K. Diagnostic accuracy of stress myocardial perfusion MRI and late gadolinium-enhanced MRI for detecting flow-limiting coronary artery disease: a multicenter study. Eur Radiol. 2008;18:2808–2816.
    1. Hendel RC, Berman DS, Cullom SJ, Follansbee W, Heller GV, Kiat H, Groch MW, Mahmarian JJ. Multicenter clinical trial to evaluate the efficacy of correction for photon attenuation and scatter in SPECT myocardial perfusion imaging. Circulation. 1999;99:2742–2749.
    1. Van Train KF, Garcia EV, Maddahi J, Areeda J, Cooke CD, Kiat H, Silagan G, Folks R, Friedman J, Matzer L, Germano G, Bateman T, Ziffer J, DePuey E, Fink-Bennett D, Cloninger K, Berman D. Multicenter trial validation for quantitative analysis of same-day rest-stress technetium-99m-sestamibi myocardial tomograms. J Nucl Med. 1994;35:609–618.
    1. He ZX, Iskandrian AS, Gupta NC, Verani MS. Assessing coronary artery disease with dipyridamole technetium-99m-tetrofosmin SPECT: a multicenter trial. J Nuc Med. 1997;38:44–48.
    1. Zaret BL, Rigo P, Wackers FJ, Hendel RC, Braat SH, Iskandrian AS, Sridhara BS, Jain D, Itti R, Serafini AN, Goris M, Lahiri A. Myocardial perfusion imaging with 99mTc tetrofosmin. Comparison to 201Tl imaging and coronary angiography in a phase III multicenter trial. Tetrofosmin International Trial Study Group. Circulation. 1995;91:313–319.
    1. Syed MA, Paterson DI, Ingkanisorn WP, Rhoads KL, Hill J, Cannon RO, 3rd, Arai AE. Reproducibility and inter-observer variability of dobutamine stress CMR in patients with severe coronary disease: implications for clinical research. J Cardiovasc Magn Reson. 2005;7:763–768.
    1. Jahnke C, Nagel E, Gebker R, Kokocinski T, Kelle S, Manka R, Fleck E, Paetsch I. Prognostic value of cardiac magnetic resonance stress tests: Adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation. 2007;115:1769–1776.
    1. Paetsch I, Jahnke C, Ferrari VA, Rademakers FE, Pellikka PA, Hundley WG, Poldermans D, Bax JJ, Wegscheider K, Fleck E, Nagel E. Determination of interobserver variability for identifying inducible left ventricular wall motion abnormalities during dobutamine stress magnetic resonance imaging. Eur Heart J. 2006;27:1459–1464.
    1. Plein S, Schwitter J, Suerder D, Greenwood J, Boesiger P, Kozerke S. k-t SENSE-accelerated myocardial perfusion MR imaging at 3.0 Tesla—comparison with 1.5 Tesla. Radiology. 2008;249:493–500.
    1. Wagner A, Bruder O, Schneider S, Nothnagel D, Buser P, Pons-Lado G, Dill T, Hombach V, Lombardi M, van Rossum A, Schwitter J, Senges J, Sabin S, Sechtem U, Mahrholdt H, Nagel E. Current variables, definitions and endpoints of the European Cardiovascular Magnetic Resonance Registry. J Cardiovasc Magn Reson. 2009;11:43–55.
    1. Cerqueira M, Verani M, Schwaiger M, Heo J, Iskandrian A. Safety profile of adenosine stress perfusion imaging: results from the Adenoscan Multicenter Trial Registry. J Am Coll Cardiol. 1994;23:384–389.
    1. Belardinelli L, Linden J, Berne R. The cardiac effects of adenosine. Prog Cardiovasc Dis. 1989;32:73–97.
    1. Mahmarian JJ, Cerqueira M, Iskandrian AE, Bateman T, Thomas G, Hendel RC. Regadenoson induces comparable left ventricular perfusion defects as adenosine: a quantitative analysis from the advance MPI 2 trial. J Am Coll Cardiol. 2009;2:959–968.
    1. Nagel E, Lehmkuhl HB, Bocksch W, Klein C, Vogel U, Frantz E, Ellmer A, Dreysse S, Fleck E. Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation. 1999;99:763–770.
    1. Hundley WG, Hamilton CA, Thomas MS, Herrington DM, Salido TB, Kitzman DW, Little WC, Link KM. Utility of fast cine magnetic resonance imaging and display for the detection of myocardial ischemia in patients not well suited for second harmonic stress echocardiography. Circulation. 1999;100:1697–1702.
    1. Schalla S, Klein C, Paetsch I, Lehmkuhl H, Bornstedt A, Schnackenburg B, Fleck E, Nagel E. Real-time MR image acquisition during high-dose dobutamine hydrochloride stress for detecting left ventricular wall-motion abnormalities in patients with coronary arterial disease. Radiology. 2002;224:845–851.
    1. Rerkpattanapipat P, Gandhi SK, Darty SN, Williams RT, Davis AD, Mazur W, Clark HP, Little WC, Link KM, Hamilton CA, Hundley WG. Feasibility to detect severe coronary artery stenoses with upright treadmill exercise magnetic resonance imaging. Am J Cardiol. 2003;92:603–606.
    1. Jahnke C, Paetsch I, Gebker R, Bornstedt A, Fleck E, Nagel E. Accelerated 4D dobutamine stress MR imaging with k-t BLAST: feasibility and diagnostic performance. Radiology. 2006;241:718–728.
    1. Gebker R, Jahnke C, Hucko T, Manka R, Mirelis JG, Hamdan A, Schnackenburg B, Fleck E, Paetsch I. Dobutamine stress magnetic resonance imaging for the detection of coronary artery disease in women. Heart. 2010;96:616–620.
    1. Wahl A, Paetsch I, Gollesch A, Roethemeyer S, Foell D, Gebker R, Langreck H, Klein C, Fleck E, Nagel E. Safety and feasibility of high-dose dobutamine-atropine stress cardiovascular magnetic resonance for diagnosis of myocardial ischaemia: experience in 1000 consecutive cases. Eur Heart J. 2004;25:1230–1236.
    1. Hundley WG, Morgan TM, Neagle CM, Hamilton CA, Rerkpattanapipat P, Link KM. Magnetic resonance imaging determination of cardiac prognosis. Circulation. 2002;106:2328–2333.
    1. Davies R, Goldberg D, Forman S, Pepine C, Knatterud G, Geller N, Sopko G, Pratt C, Deanfield J, Conti C. Asymptomatic Cardiac Ischemia Pilot (ACIP) study two-year follow-up: outcomes of patients randomized to initial strategies of medical therapy versus revascularization . Circulation. 1997;95:2037–2043.
    1. Wijns W, Kolh P, Danchin N, CarloDi M, Falk V, Folliguet T, Garg S, Huber K, James S, Knuuti J, Lopez-Sendon J, Marco J, Menicanti L, Ostojic M, Piepoli M, Pirlet C, Pomar JL, Reifart N, Ribichini F, Schalij M, Sergeant P, Serruys P, Silber S, Uva M, Taggart D. Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) Eur Heart J. 2010 .
    1. Diamond G, Forrester J. Analysis of probability as an aid in the clinical diagnosis of coronary artery disease. N Engl J Med. 1979;300:1350–1358.
    1. Ladenheim M, Pollock B, Rozanski A, Berman DS, Staniloff H, Forrester J, Diamond G. Extent and severity of myocardial hypoperfusion as predictors of prognosis in patients with suspected coronary artery disease. J Am Coll Cardiol. 1986;7:464–471.
    1. Hachamovitch R, Berman DS, Kiat H, Cohen I, Cabico J, Friedman J, Diamond G. Exercise myocardial perfusion SPECT in patients without known coronary artery disease. Circulation. 1996;93:905–914.
    1. Hachamovitch R, Berman DS, Shaw L, Kiat H, Cohen I, Cabico J, Friedman J, Diamond G. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation. 1998;97:535–543.
    1. Iskander S, Iskandrian AE. Risk assessment using single-photon emission computed tomographic technetium-99m sestamibi imaging. J Am Coll Cardiol. 1998;32:57–62.
    1. Steel K, Broderick R, Gandla V, Larose E, Resnic F, Jerosch-Herold M, Brown K, Kwong RY. Complementary prognostic values of stress myocardial perfusion and late gadolinium enhancement imaging by cardiac magnetic resonance in patients with known or suspected coronary artery disease. Circulation. 2009;120:1390–1400.
    1. Maehara A, Mintz G, Bui A, Walter O, Castagna M, Canos D, Pichard A, Satler L, Waksman R, Suddath W, Laird J, Kent K, Weissman N. Morphologic and angiographic features of coronary plaque rupture detected by intravascular ultrasound. J Am Coll Cardiol. 2002;40:904–910.
    1. Burke A, Kolodgie F, Farb A, Weber D, Malcom G, Smialek J, Virmani R. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation. 2001;103:934–940.
    1. Ojio S, Takatsu H, Tanaka T. Considerable time from the onset of plaque rupture and/or thrombi until the onset of acute myocardial infarction in humans: coronary angiographic findings within 1 week before the onset of infarction. Circulation. 2000;102:2063–2069.
    1. Kemp H, Kronmal R, Vlietstra R, Frye R. Seven year survival of patients with normal or near normal coronary arteriograms: a CASS registry study. J Am Coll Cardiol. 1986;7:479–483.
    1. Bruschke AV, Kramer JR, Jr, Bal ET, Haque IU, Detrano RC, Goormastic M. The dynamics of progression of coronary atherosclerosis studied in 168 medically treated patients who underwent coronary arteriography three times. Am Heart J. 1989;117:296–305.
    1. Waters D, Lesperance J, Francetich M, Causey D, Theroux P, Chiang YK, Hudon G, Lemarbre L, Reitman M, Joyal M, Gosselin G, Dyrda I, Macer J, Havel RA. A controlled clinical trial to assess the effect of a calcium channel blocker on the progression of coronary atherosclerosis. Circulation. 1990;82:1940–1953.
    1. Hachamovitch R, Berman DS, Kiat H, Cohen I, Friedman J, Shaw L. Value of stress myocardial perfusion single photon emission computed tomography in patients with normal resting electrocardiograms: an evaluation of incremental prognostic value and cost-effectiveness. Circulation. 2002;105:823–829.
    1. Smith SJ, Feldman T, Hirshfeld JJ, Jacobs A, Kern M, King S, III, Morrison D, O'Neill W, Schaff H, Whitlow P, Williams D. ACC/AHA/SCAI 2005 guidelines update for percutaneous coronary intervention: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/SCAI Writing Committee to Update 2001 Guidelines for Percutaneous Coronary Intervention) Circulation. 2006;113:e166–e286.
    1. Cardis E, Vrijheid M, Blettner M, Gilbert E, Hakama M, Hill C, Howe G, Kaldor J, Muirhead C, Schubauer-Berigan M, Yoshimura T, Berman F, Cowper G, Fix J, Hacker C, Heinmiller B, Marshall M, Thierry-Chef I, Utterback D, Ahn Y-O, Amoros E, Ashmore P, Auvinen A, Bae J-M, Bernar Solano J, Biau A, Combalot E, Deboodt P, Diez Sacristan A, Eklof M, Engels H, Engholm G, Gulis G, Habib R, Holan K, Hyvonen H, Kerekes A, Kurtinaitis J, Malker H, Martuzzi M, Mastauskas A, Monnet A, Moser M, Pearce M, Richardson D, Dodriguez-Artalejo F, Rogel A, Tardy H, Telle-Lamberton M, Turai I, Usel M, Veress K. Risk of cancer after low doses of ionising radiation: retrospective cohort study in 15 countries. Br Med J. 2005;331:77–82.
    1. National Research Council; Biological effects of ionizing radiation (BEIR) reports VII-Phase 2. .
    1. Bruder O, Schneider S, Nothnagel D, Dill T, Hombach V, Schulz-Menger J, Nagel E, Lombardi M, van Rossum A, Wagner A, Schwitter J, Senges J, Sabin G, Sechtem U, Mahrholdt H. EuroCMR (European Cardiovascular Magnetic Resonance) Registry. J Am Coll Cardiol. 2009;54:1457–1466.
    1. Van de Werf F, Bax J, Betriu A, Blomstrom-Lundqvist C, Crea F, Falk V, Filipatos G, Fox K, Huber K, Kastrati A, Rosengren A, Steg PG, Tubaro M, Verheugt F, Weidinger F, Weis M. Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation. Eur Heart J. 2008;29:2909–2945.
    1. Ricciardi M, Wu E, Davidson C, Choi K, Klocke F, Bonow R, Judd R, Kim R. Visualization of discrete microinfarction after percutaneous coronary intervention associated with mild creatine kinase-MB elevation. Circulation. 2001;103:2780–2783.
    1. Wagner A, Mahrholdt H, Holly TA, Elliott MD, Regenfus M, Parker M, Klocke FJ, Bonow RO, Kim RJ, Judd RM. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet. 2003;361:374–379.
    1. Simonetti O, Kim R, Fieno D, Hillenbrand HB, Wu E, Bundy JJ, Judd R. An improved MR imaging technique for the visualization of myocardial infarction. Radiology. 2001;218:215–223.
    1. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, Bundy J, Finn JP, Klocke FJ, Judd RM. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100:1992–2002.
    1. Hillenbrand HB, Kim RJ, Parker MA, Fieno DS, Judd RM. Early assessment of myocardial salvage by contrast-enhanced magnetic resonance imaging. Circulation. 2000;102:1678–1683.
    1. Lima J, Judd R, Bazille A, Schulman S, Atalar E, Zerhouni E. Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI: Potential mechanisms. Circulation. 1995;92:1117–1125.
    1. Schwitter J, Saeed M, Wendland MF, Derugin N, Canet E, Brasch RC, Higgins CB. Influence of severity of myocardial injury on distribution of macromolecules: extravascular versus intravascular gadolinium-based magnetic resonance contrast agents. J Am Coll Cardiol. 1997;30:1086–1094.
    1. Rehwald WG, Fieno DS, Chen EL, Kim RJ, Judd RM. Myocardial magnetic resonance imaging contrast agent concentrations after reversible and irreversible ischemic injury. Circulation. 2002;105:224–229.
    1. Fieno D, Kim R, Chen E, Lomasney J, Klocke F, Judd R. Contrast-enhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing. J Am Coll Cardiol. 2000;36:1985–1991.
    1. Judd RM, Lugo-Olivieri CH, Arai M, Kondo T, Croisille P, Lima JA, Mohan V, Becker LC, Zerhouni E. Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation. 1995;92:1902–1910.
    1. Rochitte CE, Lima JA, Bluemke DA, Reeder SB, McVeigh ER, Furuta T, Becker LC, Melin JA. Magnitude and time course of microvascular obstruction and tissue injury after acute myocardial infarction. Circulation. 1998;98:1006–1014.
    1. Beek AM, Kuhl HP, Bondarenko O, Twisk JW, Hofman MB, van Dockum WG, Visser CA, van Rossum AC. Delayed contrast-enhanced magnetic resonance imaging for the prediction of regional functional improvement after acute myocardial infarction. J Am Coll Cardiol. 2003;42:895–901.
    1. Choi KM, Kim RJ, Gubernikoff G, Vargas JD, Parker M, Judd RM. Transmural extent of acute myocardial infarction predicts long-term improvement in contractile function. Circulation. 2001;104:1101–1107.
    1. Ingkanisorn W, Rhoads K, Aletras A, Kellman P, Arai A. Gadolinium delayed enhancement cardiovascular magnetic resonance correlates with clinical measures of myocardial infarction. J Am Coll Cardiol. 2004;43:2253–2259.
    1. Gutberlet M, Frohlich M, Mehl S, Amthauer H, Hausmann H, Meyer R, Siniawski H, Ruf J, Plotkin M, Denecke T, Schnackenburg B, Hetzer R, Felix R. Myocardial viability assessment in patients with highly impaired left ventricular function: comparison of delayed enhancement, dobutamine stress MRI, end-diastolic wall thickness, and TI201-SPECT with functional recovery after revascularization. Eur Radiol. 2005;15:872–880.
    1. Klein C, Nekolla SG, Bengel FM, Momose M, Sammer A, Haas F, Schnackenburg B, Delius W, Mudra H, Wolfram D, Schwaiger M. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation. 2002;105:162–167.
    1. Knuesel PR, Nanz D, Wyss C, Buechi M, Kaufmann PA, von Schulthess GK, Luscher TF, Schwitter J. Characterization of dysfunctional myocardium by positron emission tomography and magnetic resonance: relation to functional outcome after revascularization. Circulation. 2003;108:1095–1100.
    1. Kuhl H, Beek A, van der Weerdt A, Hofman M, Visser C, Lammertsma A, Heussen N, Visser F, van Rossum A. Myocardial viability in chronic ischemic heart disease: comparison of contrast-enhanced magnetic resonance imaging with (18)F-fluorodeoxyglucose positron emission tomograph. J Am Coll Cardiol. 2003;41:1341–1348.
    1. Kim RJ, Albert T, Wible J, Elliott MD, Allen JM, Lee J, Parker M, Napoli A, Judd R. Performance of delayed-enhancement magnetic resonance imaging with gadoversetamide contrast for the detection and assessment of myocardial infarction: an international, multicenter, double-blinded, randomized trial. Circulation. 2008;117:629–637.
    1. Atar D, Petzelbauer P, Schwitter J, Huber K, Rensing B, Kasprzak J, Butter C, Grip L, Hansen P, Süselbeck T, Clemmensen P, Marin-Galiano M, Geudelin B, Buser P Investigators ftF. Effect of intravenous FX06 as an adjunct to primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2009;53:720–729.
    1. Aletras A, Tilak G, Natanzon A, Hsu L-Y, Gonzalez F, Hoyt RJ, Arai A. Retrospective determination of the area at risk for reperfused acute myocardial infarction with T2-weighted cardiac magnetic resonance imaging: histopathological and displacement encoding with stimulated echoes (DENSE) functional validations. Circulation. 2006;113:1865–1870.
    1. Giri S, Chung Y, Merchant A, Mihai G, Rajagopalan S, Raman S, Simonetti O. T2 quantification for improved detection of myocardial edema. J Cardiovasc Magn Reson. 2009;11:56.
    1. Francone M, Bucciarelli-Ducci C, Carbone I, Canali E, Scardala R, Calabrese F, Sardella G, Mancone M, Catalano C, Fedele F, Passariello R, Bogaert J, Agati L. Impact of primary coronary angioplasty delay on myocardial salvage, infarct size, and microvascular damage in patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2009;54:2145–2153.
    1. Eitel I, Desch S, Fuernau G, Hildebrand L, Gutberlet M, Schuler G, Thiele H. Prognostic significance and determinants of myocardial salvage assessed by cardiovascular magnetic resonance in acute reperfused myocardial infarction. J Am Coll Cardiol. 2010;55:2470–2479.
    1. Lotan C, Bouchard A, Cranney G, Bishop S, Pohost G. Assessment of postreperfusion myocardial hemorrhage using proton NMR imaging at 1.5 T. Circulation. 1992;86:1918–1025.
    1. Basso C, Corbetti F, Silva C, Abudureheman A, Lacognata C, Cacciavillani L, Tarantini G, Marra M, Ramondo A, Thiene G, Iliceto S. Morphologic validation of reperfused hemorrhagic myocardial infarction by cardiovascular magnetic resonance. Am J Cardiol. 2007;100:1322–1327.
    1. O'Regan D, Ahmed R, Karunanithy N, Neuwirth C, Tan Y, Durighel G, Hajnal J, Nadra I, Corbett S, Cook S. Reperfusion hemorrhage following acute myocardial infarction: assessment with T2* mapping and effect on measuring the area at risk. Radiology. 2009;250:916–922.
    1. Ganame J, Messalli G, Dymarkowski S, Rademakers FE, Desmet W, Van de Werf F, Bogaert J. Impact of myocardial haemorrhage on left ventricular function and remodelling in patients with reperfused acute myocardial infarction. Eur Heart J. 2009;30:1440–1449.
    1. Forest R, Shofer F, Sease K, Hollander J. Assessment of the standardized reporting guidelines ECG classification system: the presenting ECG predicts 30-day outcomes. Ann Emerg Med. 2004;44:206–212.
    1. Gibler W, Cannon C, Blomkalns A, Char D, Drew B, Hollander J, Jaffe A, Jesse R, Newby L, Ohman E, Peterson ED, Pollak C. Practical implementation of the guidelines for unstable angina/non-ST segment elevation myocardial infarction in the emergency department. Circulation. 2005;111:2699–2710.
    1. Bassand J-P, Hamm C, Ardissino D, Boersma E, Budaj A, Fernandez-Aviles F, Fox K, Hasdai D, Ohman E, Wallentin L, Wijns W. Guidelines for the diagnosis and treatment of non-ST-segment elevation acute coronary syndromes: The Task Force for the Diagnosis and Treatment of Non-ST-Segment Elevation Acute Coronary Syndromes of the European Society of Cardiology. Eur Heart J. 2007;28:1598–1660.
    1. Kwong R, Schussheim A, Rekhraj S, Aletras A, Geller NL, Davis J, Christian T, Balaban R, Arai A. Detecting acute coronary syndrome in the emergency department with cardiac magnetic resonance imaging. Circulation. 2003;107:531–537.
    1. Cury R, Shash K, Nagurney J, Rosito G, Shapiro M, Nomura C, Abbara S, Bamberg F, Ferencik M, Schmidt E, Brown D, Hoffmann U, Brady T. Cardiac magnetic resonance with T2-weighted imaging improves detection of patients with acute coronary syndrome in the emergency department. Circulation. 2008;118:837–844.
    1. Ingkanisorn WP, Kwong RY, Bohme NS, Geller NL, Rhoads KL, Dyke CK, Paterson DI, Syed MA, Aletras AH, Arai AE. Prognosis of negative adenosine stress magnetic resonance in patients presenting to an emergency department with chest pain. J Am Coll Cardiol. 2006;47:1427–1432.
    1. Plein S, Greenwood J, Ridgeway J, Cranny G, Ball SG, Sivananthan M. Assessment of non-ST-segment elevation acute coronary syndromes with cardiac magnetic resonance imaging. J Am Coll Cardiol. 2004;44:2173–2181.
    1. Miller C, Hwang W, Hoekstra J, Case D, Lefebvre C, Blumstein H, Hiestand B, Diercks D, Hamilton CA, Harper E, Hundley WG. Stress cardiac magnetic resonance imaging with observation unit care reduces cost for patients with emergent chest pain: a randomized trial. Ann Emerg Med. 2010;56:209–219.
    1. Assomull R, Prasad S, Lyne J, Smith G, Burman E, Khan M, Sheppard M, Poole-Wilson P, Pennell D. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol. 2005;48:1977–1985.
    1. Laissy JP, Hyafil F, Feldman LJ, Juliard JM, Schouman-Claeys E, Steg PG, Faraggi M. Differentiating acute myocardial infarction from myocarditis: diagnostic value of early- and delayed-perfusion cardiac MR imaging. Radiology. 2005;237:75–82.
    1. Mahrholdt H, Wagner A, Deluigi CC, Kispert E, Hager S, Meinhardt G, Vogelsberg H, Fritz P, Dippon J, Bock CT, Klingel K, Kandolf R, Sechtem U. Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation. 2006;114:1581–1590.
    1. Haghi D, Fluechter S, Suselbeck T, Kaden J, Borggrefe M, Papavassiliu T. Cardiovascular magnetic resonance findings in typical versus atypical forms of the acute apical ballooning syndrome (Takotsubo cardiomyopathy) Int J Cardiol. 2007;120:205–211.
    1. Mitchell J, Hadden T, Wilson J, Achari A, Muthupillai R, Flamm S. Clinical features and usefulness of cardiac magnetic resonance imaging in assessing myocardial viability and prognosis in Takotsubo cardiomyopathy (transient left ventricular apical ballooning syndrome) Am J Cardiol. 2007;100:296–301.
    1. Rolf A, Nef H, Moellmann H, Troidl C, Voss S, Conradi G, Rixe J, Steiger H, Beiring K, Hamm C, Dill T. Immunohistological basis of the late gadolinium enhancement phenomenon in tako-tsubo cardiomyopathy. Eur Heart J. 2009;30:1635–1642.
    1. Eitel I, Lucke C, Grothoff M, Sareban M, Schuler G, Thiele H, Gutberlet M. Inflammation in takotsubo cardiomyopathy: insights from cardiovascular magnetic resonance imaging. Eur Radiol. 2010;20:422–431.
    1. Schwitter J. MRI and MRA of the thoracic aorta. Appl Radiol. 2006;Suppl. May:6–13.
    1. Levitt M, Promes S, Bullock S, Disano M, Young G, Gee G, Peaslee D. Combined cardiac marker approach with adjunct two-dimensional echocardiography to diagnose acute myocardial infarction in the emergency department. Ann Emerg Med. 1996;27:1–7.
    1. Kontos M, Arrowood J, Paulsen W, Nixon J. Early echocardiography can predict cardiac events in emergency department patients with chest pain. Ann Emerg Med. 1998;31:550–557.
    1. Kaul S, Senior R, Firschke C, Wang X, Lindner J, Villanueva F, Firozan S, Kontos M, Taylor AJ, Nixon I, Watson D, Harrell F. Incremental value of cardiac imaging in patients presenting to the emergency department with chest pain and without ST-segment elevation: a multicenter study. Am Heart J. 2004;148:129–136.
    1. Udelson J, Beshansky J, Ballin D, Feldman J, Griffith J, Heller GV, Hendel RC, Pope J, Ruthazer R, Spiegler E, Woolard R, Handler J, Selker H. Myocardial perfusion imaging for evaluation and triage of patients with suspected acute cardiac ischemia. JAMA. 2002;288:2693–2700.
    1. Bluemke DA, Achenbach S, Budoff M, Gerber T, Gersh B, Hillis L, Hundley WG, Manning WJ, Printz B, Stuber M, Woodard PK. noninvasive coronary artery imaging: magnetic resonance angiography and multidetector computed tomography angiography: a scientific statement from the American Heart Association Committee on cardiovascular imaging and intervention of the council on cardiovascular radiology and intervention, and the councils on clinical cardiology and cardiovascular disease in the young. Circulation. 2008;118:586–606.
    1. White C, Kuo D, Kelemen M, Jain V, Musk A, Zaidi E, Read K, Sliker C, Prasad R. Chest pain evaluation in the emergency department: can MDCT provide a comprehensive evaluation. Am J Roentgenol. 2005;185:533–540.
    1. Hoffmann U, Nagurney J, Moselewski F, Pena A, Ferencik M, Chae C, Cury R, Butler J, Abbara S, Brown D, Manini A, Nichols J, Achenbach S, Brady T. Coronary multidetector computed tomography in the assessment of patients with acute chest pain. Circulation. 2006;114:2251–2260.
    1. Hoffmann U, Bamberg F, Chae C, Nichols J, Rogers I, Seneviratne S, Truong Q, Cury R, Abbara S, Shapiro M, Moloo J, Butler J, Ferencik M, Lee H, Jang I, Parry B, Brown D, Udelson J, Achenbach S, Brady T, Nagurney J. Coronary computed tomography angiography for early triage of patients with acute chest pain. J Am Coll Cardiol. 2009;53:1642–1650.
    1. Goldstein J, Gallagher M, O'Neill W, Ross M, O'Neil B, Raff G. A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. J Am Coll Cardiol. 2007;49:863–871.
    1. Hollander J, Chang A, Shofer F, McCusker C, Baxt W, Litt H. Coronary computed tomographic angiography for rapid discharge of low-risk patients with potential acute coronary syndromes. Ann Emerg Med. 2009;53:295–304.
    1. Rubinshtein R, Halon D, Gaspar T, Jaffe R, Karkabi B, Flugelman M, Kogan A, Shapira R, Peled N, Lewis B. Usefulness of 64-slice cardiac computed tomographic angiography for diagnosing acute coronary syndromes and predicting clinical outcome in emergency department patients with chest pain of uncertain origin. Circulation. 2007;115:1762–1768.
    1. Varetto T, Cantalupi D, Altieri A, Orlandi C. Emergency room technetium-99m sestamibi imaging to rule out acute myocardial ischemic events in patients with nondiagnostic electrocardiograms. J Am Coll Cardiol. 1993;22:1804–1808.
    1. Wackers F, Lie K, Liem K, Sokole E, Samson G, van der Schoot J, Durrer D. Potential value of thallium-201 scintigraphy as a means of selecting patients for the coronary care unit. Br Heart J. 1979;41:111–117.
    1. Hilton T, Thompson R, Williams H, Saylors R, Fulmer H, Stowers S. Technetium-99m sestamibi myocardial perfusion imaging in the emergency room evaluation of chest pain. J Am Coll Cardiol. 1994;23:1016–1022.
    1. Tatum J, Jesse R, Kontos M, Nicholson C, Schmidt K, Roberts C, Ornato J. Comprehensive strategy for the evaluation and triage of the chest pain patient. Ann Emerg Med. 1997;29:116–125.
    1. Kontos M, Jesse R, Schmidt K, Ornato J, Tatum J. Value of acute rest sestamibi perfusion imaging for evaluation of patients admitted to the emergency department with chest pain. J Am Coll Cardiol. 1997;30:976–982.
    1. Heller GV, Stowerd S, Hendel RC, Herman S, Daher E, Ahlberg A, Baron J, Mendes de Leon C, Rizzo J, Wackers F. Clinical value of acute rest technetium-99m tetrofosmin tomographic myocardial perfusion imaging in patients with acute chest pain and nondiagnostic electrocardiograms. J Am Coll Cardiol. 1998;31:1011–1017.
    1. Kontos M, Jesse R, Anderson F, Schmidt K, Ornato J, Tatum J. Comparison of myocardial perfusion imaging and cardiac troponin I in patients admitted to the emergency department with chest pain. Circulation. 1999;99:2073–2078.
    1. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, Klocke FJ, Bonow RO, Judd RM. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343:1445–1453.
    1. Wu KC, Zerhouni EA, Judd RM, Lugo-Olivieri CH, Barouch LA, Schulman SP, Blumenthal RS, Lima JA. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation. 1998;97:765–772.
    1. Hombach V, Grebe O, Merkle N, Waldenmaier S, Hoeher M, Kochs M, Woehrle J, Kestler H. Sequelae of acute myocardial infarction regarding cardiac structure and function and their prognostic significance as assessed by magnetic resonance imaging. Eur Heart J. 2005;26:549–557.
    1. Nijveldt R, Beek A, Hirsch A, Stoel M, Hofman M, Umans V, Algra P, Twisk J, van Rossum A. Functional recovery after acute myocardial infarction: a comparison between angiography, electrocardiography and cardiovascular magnetic resonance measures of microvascular injury. J Am Coll Cardiol. 2008;52:181–189.
    1. Ypenburg C, Schalij M, Bleeker G, Steendijk P, Boersma E, Dibbets-Schneider P, Stokkel M, van der Wall E, Bax J. Extent of viability to predict response to cardiac resynchronization therapy in ischemic heart failure patients. J Nuc Med. 2006;47:1565–1570.
    1. Rutz AK, Manka R, Kozerke S, Roas S, Boesiger P, Schwitter J. Left ventricular dyssynchrony in patients with left bundle branch block and patients after myocardial infarction: integration of mechanics and viability by cardiac magnetic resonance. Eur Heart J. 2009;30:2117–2127.
    1. Mollet N, Dymarkowski S, Volders W, Wathiong J, Herbots L, Rademakers F, Bogaert J. Visualization of ventricular thrombi with contrast-enhanced magnetic resonance imaging in patients with ischemic heart disease. Circulation. 2002;106:2873–2876.
    1. Srichai M, Junor C, Rodriguez L, Stillman AE, Grimm R, Lieber M, Weaver J, Smedira N, White R. Clinical, imaging, and pathological characteristics of left ventricular thrombus: a comparison of contrast-enhanced magnetic resonance imaging, transthoracic echocardiography, and transesophageal echocardiography with surgical or pathological validation. Am Heart J. 2006;152:75–84.
    1. Weinsaft JW, Kim RJ, Ross M, Krauser D, Manoushagian S, LaBounty TM, Cham MD, Min JK, Healy K, Wang Y, Parker M, Roman MJ, Devereux RB. Contrast-enhanced anatomic imaging as compared to contrast-enhanced tissue characterization for detection of left ventricular thrombus. JACC: Cardiovasc Imaging. 2009;2:969–979.
    1. McCrohon J, Moon J, Prasad S, McKenna W, Lorenz C, Coats A, Pennell D. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation. 2003;108:54–59.
    1. Mahrholdt H, Goedecke C, Wagner A, Meinhardt G, Athanasiadis A, Vogelsberg H, Fritz P, Klingel K, Kandolf R, Sechtem U. Cardiovascular magnetic resonance assessment of human myocarditis: a comparison to histology and molecular pathology. Circulation. 2004;109:1250–1258.
    1. Hunold P, Schlosser T, Vogt FM, Eggebrecht H, Schmermund A, Bruder O, Schuler WO, Barkhausen J. Myocardial late enhancement in contrast-enhanced cardiac MRI: distinction between infarction scar and non-infarction-related disease. Am J Roentgenol. 2005;184:1420–1426.
    1. Ingkanisorn WP, Paterson DI, Calvo KR, Rosing DR, Schwartzentruber DJ, Fuisz AR, Arai AE. Cardiac magnetic resonance appearance of myocarditis caused by high dose IL-2: similarities to community-acquired myocarditis. J Cardiovasc Magn Reson. 2006;8:353–360.
    1. De Cobelli F, Pieroni M, Esposito A, Chimenti C, Belloni E, Mellone R, Canu T, Perseghin G, Gaudio C, Maseri A, Frustaci A, Del Maschio A. Delayed gadolinium-enhanced cardiac magnetic resonance in patients with chronic myocarditis presenting with heart failure or recurrent arrhythmias. J Am Coll Cardiol. 2006;47:1649–1654.
    1. Gutberlet M, Spors B, Thoma T, Bertram H, Denecke T, Felix R, Noutsias M, Schultheiss HP, Kuhl U. Suspected chronic myocarditis at cardiac MR: diagnostic accuracy and association with immunohistologically detected inflammation and viral persistence. Radiology. 2008;246:401–409.
    1. Baccouche H, Mahrholdt H, Meinhardt G, Merher R, Voehringer M, Hill S, Klingel K, Kandol R, Sechtem U, Yilmaz A. Diagnostic synergy of noninvasive cardiovascular magnetic resonance and invasive endomyocardial biopsies in troponin-positive patients without coronary artery disease. Eur Heart J. 2009;30:2869–2879.
    1. Abdel-Aty H, Boye P, Zagrosek A, Wassmuth R, Kumar A, Messroghli D, Bock P, Dietz R, Friedrich MG, Schulz-Menger J. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J Am Coll Cardiol. 2005;45:1815–1822.
    1. Friedrich MG, Strohm O, Schulz-Menger J, Marciniak H, Luft FC, Dietz R. Contrast-media enhanced magnetic resonance imaging visualizes myocardial changes in the course of viral myocarditis. Circulation. 1998;97:1802–1648.
    1. Syed I, Glockner J, Feng D, Martinez M, Oh J, Tajik A, Dispenzieri A, Gertz M, Araoz A, Grogan M. Cardiac magnetic resonance imaging for cardiac amyloidosis: analysis of myocardial and blood pool nulling is more sensitive than delayed enhancement. J Am Coll Cardiol. 2008;51(Suppl. A):A162.
    1. Maceira A, Joshi J, Prasad S, Moon J, Perugini E, Harding I, Sheppard M, Poole-Wilson P, Hawkins P, Pennell D. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2005;111:122–124.
    1. Vogelsberg H, Mahrholdt H, Deluigi CC, Yilmaz A, Kispert E, Greulich S, Klingel K, Kandolf R, Sechtem U. Cardiovascular magnetic resonance in clinically 48 suspected cardiac amyloidosis: noninvasive imaging compared to endomyocardial biopsy. J Am Coll Cardiol. 2008;51:1022–1030.
    1. Modell B, Khan M, Darlison M, Westwood M, Ingram D, Pennell D. Improved survival of thalassemia major in the UK and relation to T2* cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2008;10:42.
    1. Kirk P, Roughton M, Porter JJ, Tanner M, Patel J, Wu D, Taylor JL, Westwood M, Anderson L, Pennell D. Cardiac T2* magnetic resonance for prediction of cardiac complications in thalassemia major. Circulation. 2009;120:1961–1968.
    1. Roguin A, Schwitter J, Vahlhaus V, Lombardi M, Brugada J, Vardas P, Auricchio A, Priori S, Sommer T. Magnetic resonance imaging in individuals with cardiovascular implantable electronic devices. Europace. 2008;10:336–743.
    1. Syed MA, Carlson K, Murphy M, Ingkanisorn WP, Rhoads KL, Arai AE. Long-term safety of cardiac magnetic resonance imaging performed in the first few days after bare-metal stent implantation. J Magn Reson Imaging. 2006;24:1056–1061.
    1. Tschirch F, Suter K, Froehlich J, Studler U, Nidecker A, Eckhardt B, Beranek-Chiu J, Surber C, Weishaupt D. Multicenter trial: comparison of two different formulations and application systems of low-dose nasal midazolam for routine magnetic resonance imaging of claustrophobic patients. J Magn Reson Imaging. 2008;28:866–872.
    1. Weinreb J, Abu-Alfa A. Gadolinium-based contrast agents and nephrogenic systemic fibrosis: why did it happen and what have we learned? J Magn Reson Imaging. 2009;30:1236–1239.
    1. Cowper S. Nephrogenic fibrosing dermopathy [ICNSFR Website] 2010. . 17 August 2010.
    1. Schwitter J. Myocardial perfusion imaging by cardiac magnetic resonance. J Nuc Cardiol. 2006;13:841–854.
    1. Schwitter J. Extending the frontiers of cardiac magnetic resonance. Circulation. 2008;118:109–112.
    1. Flögel U, Ding Z, Hardung H, Jander S, Reichmann G, Jacoby C, Schubert R, Schrader J. In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation. 2008;118:140–148.

Source: PubMed

Подписаться