Cationic antimicrobial polymers and their assemblies

Ana Maria Carmona-Ribeiro, Letícia Dias de Melo Carrasco, Ana Maria Carmona-Ribeiro, Letícia Dias de Melo Carrasco

Abstract

Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

Figures

Figure 1
Figure 1
Polyquaternium-1 (PQ-1) (adapted from [15]), 3,3-ionene (I3,3) and x,y-ionene (Ix,y) (adapted with permission from [87]).
Figure 2
Figure 2
Amphiphilic polynorbornene derivatives with variable hydrophobic moieties in the repeating unities. Adapted with permission from [92].
Figure 3
Figure 3
Polyhexamethylene biguanide (PHMB) and its derivatives. Adapted with permission from [106].
Figure 4
Figure 4
Self-assembled antimicrobial films and dispersions driven by the electrostatic or by the ion-dipole interaction. (A) The layer-by-layer (LbL) approach to optimize delivery of antimicrobial cationic peptide from films (adapted with permission from [212]); (B) Microbicidal PDDA polymer from microbicidal dispersions of cationic lipid/carboxymethylcellulose/polydiallyldimethylammonium bromide unloaded (adapted with permission from [45]) or loaded with yellow amphotericin B (adapted from [223]); (C) QACs impregnating PMMA films obtained by spin-coating also displayed bactericidal activity (adapted with permission from [216]).
Figure 5
Figure 5
Chemical structure of rosin substituted polyesters with quaternary ammonium sandwiched between the polymer backbone and hydrophobic hydrophenanthrene [247].
Figure 6
Figure 6
Antimicrobial peptide (AMP)-mimetic polypeptide QC8 bearing an alkyl quaternary ammonium moiety in its chemical structure. Adapted with permission from [256].
Figure 7
Figure 7
Cryo-transmission electron micrograph of bovine serum albumin (BSA)/PDDA coacervates at pH 8.5 and 100 mM of ionic strength. Adapted with permission from [287].

References

    1. McDonnell G., Russell A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 1999;12:147–179.
    1. Larson E.L. Antiseptics. In: Olmstad R.N., editor. APIC Infection Control & Applied Epidemiology: Principles & Practices. Mosby-Year Book, Inc; St. Louis, MO, USA: 1996. pp. 19:1–19:7.pp. G1–G17.
    1. Rutala W.A., Weber D.J. Disinfection and sterilization in health care facilities: What clinicians need to know. Clin. Infect. Dis. 2004;39:702–709.
    1. Block S.S. Historical Review. In: Block S.S., editor. Disinfection, Sterilization, and Preservation. 5th ed. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2001. pp. 3–18.
    1. Frier M. Derivatives of 4-Amino-quinaldinium and 8-Hydroxyquinolone. In: Hugo W.B., editor. Inhibition and Destruction of the Microbial Cell. Academic Press, Ltd; London, UK: 1971. pp. 107–120.
    1. Merianos J.J. Quaternary Ammonium Antimicrobial Compounds. In: Block S.S., editor. Disinfection, Sterilization, and Preservation. 4th ed. Lea & Febiger; Philadelphia, PA, USA: 1991. pp. 225–255.
    1. Hugo W.B., Frier M. Mode of action of antibacterial compound dequalinium acetate. Appl. Microbiol. 1969;17:118–127.
    1. Hugo W.B. Disinfection Mechanisms. In: Russell A.D., Hugo W.B., Ayliffe G.A.J., editors. Principles and Practice of Disinfection, Preservation and Sterilization. 3rd ed. Blackwell Scientific Publications; Oxford, UK: 1999. pp. 258–283.
    1. Salton M.R.J. Lytic agents, cell permeability and monolayer penetrability. J. Gen. Physiol. 1968;52:277S–252S.
    1. Denyer S.P. Mechanisms of action of antibacterial biocides. Int. Biodeterior. Biodegradation. 1995;36:227–245.
    1. Davies A., Field B.S. Action of biguanides, phenols and detergents on Escherichia coli and its sphereoplasts. J. Appl. Bacteriol. 1969;32:233–243.
    1. Kanazawa A., Ikeda T., Endo T. A novel approach to mode of action of cationic biocides: Morphological effect on antibacterial activity. J. Appl. Bacteriol. 1995;78:55–60.
    1. Russell A.D., Chopra I. Understanding Antibacterial Action and Resistance. 2nd ed. Ellis Horwood; Chichester, UK: 1996.
    1. Cabral J.P.S. Mode of antibacterial action of dodine (dodecylguanidine monoacetate) in Pseudomonas syringae. Can. J. Microbiol. 1992;38:115–123.
    1. Codling C.E., Maillard J.Y., Russell A.D. Aspects of the antimicrobial mechanisms of action of a polyquaternium and an amidoamine. J. Antimicrob. Chemother. 2003;51:1153–1158.
    1. Campanhã M.T.N., Mamizuka E.M., Carmona-Ribeiro A.M. Interactions between cationic liposomes and bacteria: The physical-chemistry of the bactericidal action. J. Lipid Res. 1999;40:1495–1500.
    1. Martins L.M.S., Mamizuka E.M., Carmona-Ribeiro A.M. Cationic vesicles as bactericides. Langmuir. 1997;13:5583–5587.
    1. Kuegler R., Bouloussa O., Rondelez F. Evidence of a charge-density threshold for optimum efficiency of biocidal cationic surfaces. Microbiology. 2005;151:1341–1348.
    1. Endo Y., Tani T., Kodama M. Antimicrobial activity of tertiary amine covalently bonded to a polystyrene fiber. Appl. Environ. Microbiol. 1987;53:2050–2055.
    1. Fidai S., Farer S.W., Hancock R.E. Interaction of cationic peptides with bacterial membranes. Methods Mol. Biol. 1997;78:187–204.
    1. Friedrich C.L., Moyles D., Beverige T.J., Hancock R.E. Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob. Agents Chemother. 2000;44:2086–2092.
    1. Isquith A.J., Abbott E.A., Walters P.A. Surface-bonded antimicrobial activity of an organosilicon quaternary ammonium chloride. Appl. Microbiol. 1972;24:859–863.
    1. Tapias G.N., Sicchierolli S.M., Mamizuka E.M., Carmona-Ribeiro A.M. Interactions between cationic vesicles and Escherichia coli. Langmuir. 1994;10:3461–3465.
    1. Sicchierolli S.M., Mamizuka E.M., Carmona-Ribeiro A.M. Bacteria flocculation and death by cationic vesicles. Langmuir. 1995;11:2991–2995.
    1. Campanhã M.T.N., Mamizuka E.M., Carmona-Ribeiro A.M. Interactions between cationic vesicles and Candida albicans. J. Phys. Chem. B. 2001;105:8230–8236.
    1. Lincopan N., Mamizuka E.M., Carmona-Ribeiro A.M. In vivo activity of a novel amphotericin B formulation with synthetic cationic bilayer fragments. J. Antimicrob. Chemother. 2003;52:412–418.
    1. Lincopan N., Mamizuka E.M., Carmona-Ribeiro A.M. Low nephrotoxicity of an effective amphotericin B formulation with cationic bilayer fragments. J. Antimicrob. Chemother. 2005;55:727–734.
    1. Thome J., Holländer A., Jaeger W., Trick I., Oehr C. Ultrathin antibacterial polyammonium coatings on polymer surfaces. Surf. Coat. Technol. 2003;174–175:584–587.
    1. Kanazawa A., Ikeda T., Endo T. Novel polycationic biocides: Synthesis and antibacterial activity of polymeric phosphonium salts. J. Polym. Sci. A. 1993;31:335–343.
    1. Popa A., Davidescu C.M., Trif R., Ilia G.H., Iliescu S., Dehelean G.H. Study of quaternary ‘onium’ salts grafted on polymers: Antibacterial activity of quaternary phosphonium salts grafted on ‘gel-type’ styene-divinylbenzene copolymers. React. Funct. Polym. 2003;55:151–158.
    1. Tiller J.C., Liao C., Lewis K., Klibanov A.M. Designing surfaces that kill bacteria on contact. Proc. Natl. Acad. Sci. USA. 2001;98:5981–5985.
    1. Vieira D.B., Lincopan N., Mamizuka E.M., Petri D.F.S., Carmona-Ribeiro A.M. Competitive adsorption of cationic bilaers and chitosan on latex: Optimal biocidal action. Langmuir. 2003;19:924–932.
    1. Cen L., Neoh K.G., Kang E.T. Surface functionalization technique for conferring antibacterial properties to polymeric and cellulosic surfaces. Langmuir. 2003;19:10295–10303.
    1. Chen C.Z., Cooper S.L. Recent advances in antimicrobial dendrimers. Adv. Mater. 2000;12:843–846.
    1. Chen C.Z., Cooper S.L. Interactions between dendrimer biocides and bacterial membranes. Biomaterials. 2002;23:3359–3368.
    1. Carmona-Ribeiro A.M., Chaimovich H. Preparation and characterization of large dioctadecyl dimethylammonium chloride liposomes and comparison with small sonicated vesicles. Biochim. Biophys. Acta. 1983;733:172–179.
    1. Carmona-Ribeiro A.M., Yoshida L.S., Chaimovich H. Salt effects on the stability of dioctadecyldimethylammonium chloride and sodium dihexadecyl phosphate vesicles. J. Phys. Chem. 1985;89:2928–2933.
    1. Carmona-Ribeiro A.M., Chaimovich H. Salt-induced aggregation and fusion of dioctadecyl dimethylammonium chloride and sodium dihexadecylphosphate vesicles. Biophys. J. 1986;50:621–628.
    1. Carmona-Ribeiro A.M. Synthetic amphiphile vesicles. Chem. Soc. Rev. 1992;21:209–214.
    1. Vieira D.B., Carmona-Ribeiro A.M. Synthetic bilayer fragments for solubilization of amphotericin B. J. Colloid Interface Sci. 2001;244:427–431.
    1. Carmona-Ribeiro A.M. Lipid-Based Biomimetics in Drug and Vaccine Delivery. In: Mukherjee A., editor. Biomimetics Learning from Nature. InTech; Vulkovar, Croatia: 2010. pp. 507–534.
    1. Carmona-Ribeiro A.M., Barbassa L., Melo L.D. Antimicrobial Biomimetics. In: Cavrak M., editor. Biomimetic Based Applications. InTech; Rijeka, Croatia: 2011. pp. 227–284.
    1. Ahlstrom B., Chelminska-Bertilsson M., Thompson R.A., Edebo L. Submicellar complexes may initiate the fungicidal effects of cationic amphiphilic compounds on Candida albicans. Antimicrob. Agents Chemother. 1997;41:544–550.
    1. Vieira D.B., Carmona-Ribeiro A.M. Cationic lipids and surfactants as antifungal agents: Mode of action. J. Antimicrob. Chemother. 2006;58:760–767.
    1. Melo L.D., Mamizuka E.M., Carmona-Ribeiro A.M. Antimicrobial particles from cationic lipid and polyelectrolytes. Langmuir. 2010;26:12300–12306.
    1. Carmona-Ribeiro A.M., Midmore B.R. Synthetic bilayer adsorption onto polystyrene microspheres. Langmuir. 1992;8:801–806.
    1. Rosa H., Petri D.F.S., Carmona-Ribeiro A.M. Interactions between bacteriophage DNA and cationic biomimetic particles. J. Phys. Chem. B. 2008;112:16422–16430.
    1. Lambert P.A., Hammond S.M. Potassium fluxes, first indications of membrane damage in micro-organisms. Biochem. Biophys. Res. Commun. 1973;54:796–799.
    1. Menschutkin N. Beiträgen zur kenntnis der affinitätskoeffizienten der alkylhaloide und der organischen amine. Z. Phys. Chem. 1890;5:589–601.
    1. Jacobs W.A., Heidelberger M. The quaternary salts of hexamethylenetetramine. I. Substituted benzyl halides and the hexamethylenetetraminium salts derived therefrom. J. Biol. Chem. 1915;20:659–683.
    1. Jacobs W.A., Heidelberger M. The quaternary salts of hexamethylenetetramine. II. Monohalogenacetylbenzylamines and their hexamethylenetetraminium salts. J. Biol. Chem. 1915;20:685–694.
    1. Jacobs A.A., Heidelberger M. The quaternary salts of hexamethylenetetramine. III. monohalogenacylated aromatic amines and their hexamethylenetetraminium salts. J. Biol. Chem. 1915;21:103–143.
    1. Jacobs W.A. Tile bactericidal properties of the quaternary salts of hexamethylenetetramine. I. The problem of the chemotherapy of experimental bacterial infections. J. Exp. Med. 1916;23:563–568.
    1. Domagk G. A new class of disinfectant. Dtsch. Med. Wochenschr. 1935;61:829–832.
    1. Denmark S.E., Gould N.D., Wolf L.M. A systematic investigation of quaternary ammonium ions as asymmetric phase-transfer catalysts. Application of quantitative structure activity/selectivity relationships. J. Org. Chem. 2011;76:4337–4357.
    1. Butenschön H. Book Review: Organic syntheses based on name reactions and unnamed reaction. By Hassner, A., Stumer, C. Angew. Chem. Int. Ed. Engl. 1995;34:935–936.
    1. Butcher J.A., Preston A.F., Drysdale J. Initial screening trials of some quaternary ammonium compounds and amine salts as wood preservatives. Forest Product J. 1977;27:19–22.
    1. Butcher J.A., Drysdale J. Relative tolerance of 7 wood-destroying basidiomycetes to quaternary ammonium-compounds and copper-chrome-arsenate preservative. Mater. Organismen. 1977;12:271–277.
    1. Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 1999;99:2071–2083.
    1. Wasserscheid P., Keim W. Ionic liquids—New “solutions” for transition metal catalysis. Angew. Chem. Int. Ed. Engl. 2000;39:3772–3789.
    1. Sheldon R. Catalytic reactions in ionic liquids. Chem. Commun. 2001;23:2399–2407.
    1. Olivier-Bourbigou H., Magna L. Ionic liquids: Perspectives for organic and catalytic reactions. J. Mol. Catal. A Chem. 2002;182–183:419–437.
    1. Dupont J., de Souza R.F., Suarez P.A.Z. Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev. 2002;102:3667–3691.
    1. Earle M.J. Ionic Liquids: Solvents for the Twenty-First Century. In: Rogers R.D., Seddon K.R., editors. Ionic Liquids: Industrial Applications for Green Chemistry. Vol. 818. ACS Symposium Series; Washington D.C., WA, USA: 2002. pp. 90–105.
    1. Davis H., Jr., Gordon C.M., Hilgers C., Wasserscheid P. Synthesis and Purification of Ionic Liquids. In: Wasserscheid P., Welton T., editors. Ionic Liquids in Synthesis. Wiley-VCH Verlag GmbH & Co. KgaA; Weinheim, Germany: 2002. pp. 7–40.
    1. Sidhu M.S., Sorum H., Holck A. Resistance to quaternary ammonium compounds in food-related bacteria. Microb. Drug Resist. 2002;8:393–399.
    1. Carmona-Ribeiro A.M., Vieira D.B., Lincopan N. Cationic lipids and surfactants as anti-infective agents. Anti-Infect. Agents Med. Chem. 2006;5:33–54.
    1. Nishihara T., Okamoto T., Nishiyama N. Biodegradation of didecyldimethylammonium chloride by Pseudomonas fluorescens TN4 isolated from activated sludge. J. Appl. Microbiol. 2000;88:641–647.
    1. Arnt L., Tew G.N. New poly(phenyleneethynylene)s with cationic, facially amphiphilic structures. J. Am. Chem. Soc. 2002;124:7664–7665.
    1. Diaz T., Fischer A., Jonquières A., Brembilla A., Lochon P. Controlled polymerization of functional monomers and synthesis of block copolymers using beta-phosphonylated nitroxide. Macromolecules. 2003;36:2235–2241.
    1. Jaeger W., Wendler U., Lieske A., Bohrisch J. Novel modified polymers with permanent cationic groups. Langmuir. 1999;15:4026–4032.
    1. Oster C.G., Wittmar M., Unger F., Barbu-Tudoran L., Schaper A.K., Kissel T. Design of amine-modified graft polyesters for effective gene delivery using DNA-loaded nanoparticles. Pharm. Res. 2004;21:927–931.
    1. Tadros T. Polymeric surfactants in disperse systems. Adv. Colloid Interface Sci. 2009;147–148:281–299.
    1. Summers M., Eastoe J. Concentrated polymerized cationic surfactant phases. Langmuir. 2003;19:6357–6362.
    1. Chung M.-H., Park J.-H., Chun B.C., Chung Y.-C. Polymerizable ion-pair amphiphile that has a polymerizable group at cationic ammonium chain. Colloids Surf. B Biointerfaces. 2004;39:165–170.
    1. Liu S.Y., González Y.I., Kaler E.W. Structural fixation of spontaneous vesicles in aqueous mixtures of polymerizable anionic and cationic surfactants. Langmuir. 2003;19:10732–10738.
    1. Holmberg K. Novel Surfactants. Preparation, Applications, and Biodegradability. 2nd ed. Surfactant Science Series; Berkshire, UK: 2003.
    1. Gerber M.J., Kline S.R., Walker L.M. Characterization of rodlike aggregates generated from a cationic surfactant and a polymerizable counterion. Langmuir. 2004;20:8510–8516.
    1. Deen G.R., Gan L.H., Gan Y.Y. A new cationic surfactant N,N′-dimethyl-N-acryloyloxyundecyl piperazinium bromide and its pH-sensitive gels by microemulsion polymerization. Polymer. 2004;45:5483–5490.
    1. Zelikin A.N., Putnam D., Shastri P., Langer R., Izumrudov V.A. Aliphatic ionenes as gene delivery agents: Elucidation of structure-funtion relationship through modification of charge density and polymer length. Bioconjug. Chem. 2002;13:548–553.
    1. Izumrudov V.A., Zhiryakova M.V., Kudaibergenov S.E. Controllable stability of DNA-containing polyelectrolyte complexes in water-salt solutions. Biopolymers. 1999;52:94–108.
    1. Aubin R.A., Weinfeld M., Mirzayans R., Paterson M.C. Polybrene/DMSO-assisted gene transfer generating stable transfectants with nanogram amounts of DNA. Mol. Biotechnol. 1994;1:29–48.
    1. Rembaum A., Baumgartner W., Eisenberg A. Aliphatic ionenes. J. Polym. Sci. B. 1968;6:159–171.
    1. Littmann E.R., Marvel C.S. Cyclic quaternary ammonium salt from halogenated aliphatic tertiary amines. J. Am. Chem. Soc. 1930;52:287–294.
    1. Zelikin A.N., Akritskaya N.I., Izumrudov V.A. Modified aliphatic ionenes. Influence of charge density and length of the chains on complex formation with poly (methacrylic acid) Macromol. Chem. Phys. 2001;202:3018–3026.
    1. Ikeda T., Yamaguchi H., Tazuke S. Phase-separation in phospholipid bilayers induced by biologically-active polycations. Biochim. Biophys. Acta. 1990;1026:105–112.
    1. Rembaum A., Senyei A.E., Rajaraman R. Interaction of living cells with polyionenes and polyionene-coated surfaces. J. Biomed. Mater. Res. 1977;11:101–110.
    1. Kimura E.T., Young P.R., Barlow G.H. Study with low and high molecular weights of hexadimethrine bromide—An antiheparin agent. Exp. Biol. Med. 1962;111:37–41.
    1. Putnam D., Gentry C.A., Pack D.W., Langer R. Polymer-based gene delivery with low cytotoxicity by a unique balance of side chain termini. Proc. Natl. Acad. Sci. USA. 2001;98:1200–1205.
    1. Wolfert M.A., Dash P.R., Nazarova O., Oupicky D., Seymour L.W., Smart S., Strhalm J., Ulbrich K. Polyelectrolyte vectors for gene delivery: Influence of cationic polymer on biophysical properties of complexes formed with DNA. Bioconjug. Chem. 1999;10:993–1004.
    1. Ilker M.F., Schule H., Coughlin E.B. Modular norbornene derivatives for the preparation of well-defined amphiphilic polymers: Study of the lipid membrane disruptions activities. Macromolecules. 2004;37:694–700.
    1. Ilker M.F., Nuesslein K., Tew G.N., Coughlin E.B. Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives. J. Am. Chem. Soc. 2004;126:15870–15875.
    1. Kusnetsov J.M., Tulkki A.I., Ahonen H.E., Martikainen P.J. Efficacy of three prevention strategies against legionella in cooling water systems. J. Appl. Microbiol. 1997;82:763–768.
    1. Messick C.R., Pendland S.L., Moshirfar M., Fiscella R.G., Losnedahl K.J., Schriever C.A., Schreckenberger P.C. In-vitro activity of polyhexamethylene biguanide (PHMB) against fungal isolates associated with infective keratitis. J. Antimicrob. Chemother. 1999;44:297–298.
    1. Donoso R., Mura J.J., Lopez M. Acanthamoeba keratitis treated with propamidine and polyhexamethyl biguanide. Rev. Med. Chile. 2002;130:396–401.
    1. Gray T.B., Gross K.A., Cursons R.T.M., Shewan J.F. Acanthamoeba-keratitis—A sobering case and a promising new treatment. Aust. NZJ. Ophthalmol. 1994;22:73–76.
    1. Narasimhan S., Madhavan H.N., Therese L.K. Development and application of an in vitro susceptibility test for Acanthamoeba species isolated from keratitis to polyhexamethylene biguanide and chlorhexidine. Cornea. 2002;21:203–205.
    1. Hiti K., Walochnik J., Haller-Schober E.M., Faschinger C., Aspock H. Viability of Acanthamoeba after exposure to a multipurpose disinfecting contact lens solution and two hydrogen peroxide systems. Br. J. Ophthalmol. 2002;86:144–146.
    1. Rosin M., Welk A., Bernhardt O., Ruhnau M., Pitten F.A., Kocher T., Kramer A. Effect of a polyhexamethylene biguanide mouthrinse on bacterial counts and plaque. J. Clin. Periodontol. 2001;28:1121–1126.
    1. Rosin M., Welk A., Kocher T., Majic-Todt A., Kramer A., Pitten F.A. The effect of a polyhexamethylene biguanide mouthrinse compared to an essential oil rinse and a chlorhexidine rinse on bacterial counts and 4-day plaque regrowth. J. Clin. Periodontol. 2002;29:392–399.
    1. Payne J.D., Kudner D.W. A durable antiodor finish for cotton textiles. Text. Chem. Color. 1996;28:28–30.
    1. Davis S., Mertz P.M., Cazzaniga A., Serralta V., Orr R., Eaglstein W. The use of new antimicrobial gauze dressings: Effects on the rate of epithelization of partial-thickness wounds. Wounds. 2002;14:252–256.
    1. Cox N.A., Bailey J.S., Berrang M.E. Bactericidal treatment of hatching eggs I. Chemical immersion treatments and Salmonella. J. Appl. Poult. Res. 1998;7:347–350.
    1. Cox N.A., Berrang M.E., Buhr R.J., Bailey J.S. Bactericidal treatment of hatching eggs II. Use of chemical disinfectants with vaccum to reduce Salmonella. J. Appl. Poult. Res. 1999;8:321–326.
    1. Allen M.J., Morby A.P., White G.F. Cooperativity in the binding of the cationic biocide polyhexamethylene biguanide to nucleic acids. Biochem. Biophys. Res. Commun. 2004;318:397–404.
    1. Zhou Z., Wei D., Guan Y., Zheng A., Zhong J.-J. Extensive in vitro activity of guanidine hydrochloride polymer analogs against antibiotics-resistant clinically isolated strains. Mater. Sci. Eng. C. 2011;31:1836–1843.
    1. Tashiro T. Antibacterial and bacterium adsorbing macromolecules. Macromol. Mater. Eng. 2001;286:63–87.
    1. Kawabata N., Nishiguchi M. Antibacterial activity of soluble pyridinium-type polymers. Appl. Environ. Microbiol. 1988;54:2532–2535.
    1. Carmona-Ribeiro A.M. Bilayer-forming synthetic lipids: Drugs or carriers? Curr. Med. Chem. 2003;10:2425–2446.
    1. Carmona-Ribeiro A.M., Ortis F., Schumacher R.I., Armelin M.C.S. Interactions between cationic vesicles and cultures mammalian cells. Langmuir. 1997;13:2215–2218.
    1. Eliyahu H., Barenholz Y., Domb A.J. Polymers for DNA delivery. Molecules. 2005;10:34–64.
    1. Tros de Ilarduya C., Sun Y., Düzgüneş N. Gene delivery by lipoplexes and polyplexes. Eur. J. Pharm. Sci. 2010;40:159–170.
    1. Niculescu-Duvaz D., Heyes J., Springer C.J. Structure-activity relationship in cationic lipid mediated gene transfection. Curr. Med. Chem. 2003;10:1233–1261.
    1. Pedroso de Lima M.C., Neves S., Filipe A., Duezgunes N., Simoes S. Cationic liposomes for gene delivery: From biophysics to biological applications. Curr. Med. Chem. 2003;10:1221–1231.
    1. Miller A.D. The problem with cationic liposome/micelle-based non-viral vector systems for gene therapy. Curr. Med. Chem. 2003;10:1195–1211.
    1. Safinya C.R., Lin A.J., Slack N.L., Koltover I. Structure and Structure-Activity Correlations of Cationic Lipid/DNA Complexes: Supramolecular Assembly and Gene Delivery. In: Mahato R.I., Kim S.W., editors. Pharmaceutical Perspectives of Nucleic Acid-Based Therapeutics. Taylor & Francis; London, UK: 2002. pp. 190–209.
    1. Belmont P., Aissaoui A., Hauchecorne M., Oudrhiri N., Petit L., Vigneron J.-P., Lehn J.-M., Lehn P. Aminoglycoside-derived cationic lipids as efficient vectors for gene transfection in vitro and in vivo. J. Gene Med. 2002;4:517–526.
    1. Simberg D., Weisman S., Talmon Y., Barenholz Y. DOTAP (and other cationic lipids): Chemistry, biophysics and transfection. Crit. Rev. Ther. Drug Carrier Syst. 2004;21:257–317.
    1. Aissaoui A., Martin B., Kan E., Oudrhiri N., Hauchecorne M., Vigneron J.P., Lehn J.M., Lehn P. Novel cationic lipids incorporating an acid-sensitive acylhydrazone linker: Synthesis and transfection properties. J. Med. Chem. 2004;47:5210–5223.
    1. Mahidhar Y.V., Rajesh M., Chaudhuri A. Spacer-arm modulated gene delivery efficacy of novel cationic glycolipids: Design, synthesis and in vitro transfection biology. J. Med. Chem. 2004;47:3938–3948.
    1. Ilies M.A., Seitz W.A., Ghiviriga I., Johnson B.H., Miller A., Thompson E.B., Balaban A.T. Pyridinium cationic lipids in gene delivery: A strucuture-activity correlation study. J. Med. Chem. 2004;47:3744–3754.
    1. Byk G., Dubertret C., Escriou V., Frederic M., Jaslin G., Rangara R., Pitard B., Crouzet J., Wils P., Schwartz B., et al. Synthesis, activity and structure-activity relationship studies of novel cationic lipids for DNA transfer. J. Med. Chem. 1998;41:229–235.
    1. Smisterova J., Wagenaar A., Stuart M.C.A., Polushkin E., ten Brinke G., Hulst R., Engberts J.B.F.N., Hoekstra D. Molecular shape of the cationic lipid controls the structure of cationic lipid/dioleylphosphatidylethanolamine-DNA complexes and the efficiency of gene delivery. J. Biol. Chem. 2001;276:47615–47622.
    1. van der Woude I., Wagenaar A., Meekel A.A.P., ter Beest M.B.A., Ruiters M.H.J., Engberts J.B.F.N., Hoekstra D. Novel pyridinium surfactants for efficient, nontoxic in vitro gene delivery. Proc. Natl. Acad. Sci. USA. 1997;94:1160–1165.
    1. Karmali P.P., Kumar V.V., Chaudhuri A. Design, synthesis and in vitro gene delivery efficacies of novel mono- and trilysinated cationic lipids: A structure-activity investigation. J. Med. Chem. 2004;47:2123–2132.
    1. Floch V., Loisel S., Guenin E., Hervé A.C., Clement J.C., Yaouanc J.J., des Abbayes H., Férec C. Cation substitution in cationic phosphonolipids: A new concept to improve transfection activity and decrease cellular toxicity. J. Med. Chem. 2000;43:4617–4628.
    1. Jacopin C., Ho H., Scherman D., Herscovici J. Synthesis and transfecting properties of a glycosylated polycationic DNA vector. Bioorg. Med. Chem. Lett. 2001;11:419–422.
    1. Vigneron J.P., Oudrhiri N., Fauquet M., Vergely L., Bradley J.C., Basseville M., Lehn P., Lehn J.M. Guanidinium-cholesterol cationic lipids: Efficient vectors for the transfection of eukaryotic cells. Proc. Natl. Acad. Sci. USA. 1996;93:9682–9686.
    1. Patel M., Vivien E., Hauchecorne M., Oudrhiri N., Ramasawmy R., Vigneron J.P., Lehn P., Lehn J.M. Efficient gene transfection by bisguanylated diacetylene lipid formulations. Biochem. Biophys. Res. Commun. 2001;281:536–543.
    1. Marshall J., Nietupski J.B., Lee E.R., Siegel C.S., Rafter P.W., Rudginsky S.A., Chang C.D., Eastman S.J., Harris D.J., Scheule R.K., et al. Cationic lipid structure and formulation considerations for optimal gene transfection of the lung. J. Drug Target. 2000;7:453–469.
    1. Layman J.M., Ramirez S.M., Green M.D., Long T.E. Influence of polycation molecular weight on poly (2-dimethylaminoethyl methacrylate)-mediated DNA delivery in vitro. Biomacromolecules. 2009;10:1244–1252.
    1. Matyjaszewski K., Davis T.P. Handbook of Radical Polymerization. John Wiley & Sons; New York, NY, USA: 2002.
    1. Venkataraman S., Zhang Y., Liu L., Yang Y.-Y. Design, syntheses and evaluation of hemocompatible pegylated-antimicrobial polymers with well-controlled molecular structures. Biomaterials. 2010;31:1751–1756.
    1. Ji W., Panus D., Palumbo R.N., Tang R., Wang C. Poly (2-aminoethyl methacrylate) with well-defined chain length for DNA vaccine delivery to dendritic cells. Biomacromolecules. 2011;12:4373–4385.
    1. Kuroda K., DeGrado W.F. Amphiphilic polymethacrylate derivatives as antimicrobial agents. J. Am. Chem. Soc. 2005;127:4128–4129.
    1. Feder R., Dagan A., Mor A. Structure-activity relationship study of antimicrobial dermaseptin S4 showing the consequences of peptide oligomerization on selective cytotoxicity. J. Biol. Chem. 2000;275:4230–4238.
    1. Palermo E.F., Kuroda K. Structural determinants of antimicrobial activity in polymers which mimic host defense peptides. Appl. Microbiol. Biotechnol. 2010;87:1605–1615.
    1. Hamuro Y., Schneider J.P., DeGrado W.F. De novo design of antibacterial beta-peptides. J. Am. Chem. Soc. 1999;121:12200–12201.
    1. Patch J.A., Barron A.E. Helical peptoid mimics of magainin-2 amide. J. Am. Chem. Soc. 2003;125:12092–12093.
    1. Sellenet P.H., Allison B., Applegate B.M., Youngblood J.P. Synergistic activity of hydrophilic modification in antibiotic polymers. Biomacromolecules. 2007;8:19–23.
    1. Kuroda K., Caputo G.A., DeGrado W.F. The role of hydrophobicity in the antimicrobial and hemolytic activities of polymethacrylate derivatives. Chemistry. 2009;15:1123–1133.
    1. Mowery B.P., Lee S.E., Kissounko D.A., Epand R.F., Epand R.M., Weisblum B., Stahl S.S., Gellman S.H. Mimicry of antimicrobial host-defense peptides by random copolymers. J. Am. Chem. Soc. 2007;129:15474–15476.
    1. Palermo E.F., Lee D.-K., Ramamoorthy A., Kuroda K. Role of cationic group structure in membrane binding and disruption by amphiphilic copolymers. J. Phys. Chem. B. 2011;115:366–375.
    1. Azzam T., Domb A.J. Current developments in gene transfection agents. Curr. Drug Deliv. 2004;1:165–193.
    1. Khalil H., Chen T., Riffon R., Wang R., Wang Z. Synergy between polyethylenimine and different families of antibiotics against a resistant clinical isolate of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2008;52:1635–1641.
    1. Fuchs B.B., Tegos G.P., Hamblin M.R., Mylonakis E. Susceptibility of Cryptococcus neoformans to photodynamic inactivation is associated with cell wall integrity. Antimicrob. Agents Chemother. 2007;51:2929–2936.
    1. Tegos G.P., Anbe M., Yang C., Demidova T.N., Satti M., Mroz P., Janjua S., Gad F., Hamblin M.R. Protease-stable polycationic photosensitizer conjugates between polyethyleneimine and chlorin(e6) for broad-spectrum antimicrobial photoinactivation. Antimicrob. Agents Chemother. 2006;50:1402–1410.
    1. Milovic N.M., Wang J., Lewis K., Klibanov A.M. Immobilized N-alkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed. Biotechnol. Bioeng. 2005;90:715–722.
    1. Spoden G.A., Besold K., Krauter S., Plachter B., Hanik N., Kilbinger A.F., Lambert C., Florin L. Polyethylenimine is a strong inhibitor of human papillomavirus and cytomegalovirus infection. Antimicrob. Agents Chemother. 2012;56:75–82.
    1. Soukos N.S., Ximenez-Fyvie L.A., Hamblin M.R., Socransky S.S., Hasan T. Targeted antimicrobial photochemotherapy. Antimicrob. Agents Chemother. 1998;42:2595–2601.
    1. Sharma S.K., Dai T., Kharkwal G.B., Huang Y.Y., Huang L., Bil De Arce V.J., Tegos G.P., Hamblin M.R. Drug discovery of antimicrobial photosensitizers using animal models. Curr. Pharm. Des. 2011;17:1303–1319.
    1. Lu L., Rininsl F.H., Wittenburg S.K., Achyuthan K.E., McBranch D.W., Whitten D.G. Biocidal activity of a light-absorbing fluorescent conjugated polyelectrolyte. Langmuir. 2005;21:10154–10159.
    1. Chemburu S., Corbitt T.S., Ista L.K., Ji E., Fulghum J., Lopez G.P., Ogawa K., Schanze K.S., Whitten D.G. Light-induced biocidal action of conjugated polyelectrolytes supported on colloids. Langmuir. 2008;24:11053–11062.
    1. Tang Y.L., Zhou Z.J., Ogawa K., Lopez G.P., Schanze K.S., Whitten D.G. Synthesis, self-assembly, and photophysical behavior of oligo phenylene ethynylenes: From molecular to supramolecular properties. Langmuir. 2009;25:21–25.
    1. Tang Y.L., Hill E.H., Zhou Z.J., Evans D.G., Schanze K.S., Whitten D.G. Synthesis, self-assembly, and photophysical properties of cationic oligo(p-phenyleneethynylene)s. Langmuir. 2011;27:4945–4955.
    1. Zhou Z.J., Corbitt T.S., Parthasarathy A., Tang Y.L., Ista L.F., Schanze K.S., Whitten D.G. “End-only” functionalized oligo(phenylene ethynylene)s: Synthesis, photophysical and biocidal activity. J. Phys. Chem. Lett. 2010;1:3207–3212.
    1. Corbitt T.S., Sommer J.R., Chemburu S., Ogawa K., Ista L.K., Lopez G.P., Whitten D.G., Schanze K.S. Conjugated polyelectrolyte capsules: Light-activated antimicrobial micro “Roach Motels”. ACS Appl. Mater. Interfaces. 2009;1:48–52.
    1. Zhao X.Y., Pinto M.R., Hardison L.M., Mwaura J., Muller J., Jiang H., Witker D., Kleiman V.D., Reynolds J.R., Schanze K.S. Variable band gap poly (arylene ethynylene) conjugated polyelectrolytes. Macromolecules. 2006;39:6355–6366.
    1. Wang Y., Zhou Z.J., Zhu J.S., Tang Y.L., Canady T.D., Chi E.Y., Schanze K.S., Whitten D.G. Dark antimicrobial mechanisms of cationic phenylene ethynylene polymers and oligomers against Escherichia coli. Polymers. 2011;3:1199–1214.
    1. Lee H., Larson R.G. Lipid bilayer curvature and pore formation induced by charged linear polymers and dendrimers: The effect of molecular shape. J. Phys. Chem. B. 2008;112:12279–12285.
    1. Melo M.N., Ferre R., Castanho M.A.R.B. Antimicrobial peptides: Linking partition, activity and high membrane-bound concentrations. Nat. Rev. Microbiol. 2009;7:245–250.
    1. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389–395.
    1. Brogden K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005;3:238–250.
    1. Pereira A.H. Novel therapeutics based on cationic peptides. Curr. Pharm. Biotechnol. 2006;7:229–234.
    1. Rossi L.M., Rangasamy P., Zhang J., Qui X.-Q., Wu G.Y. Research advances in the development of peptides antibiotics. J. Pharm. Sci. 2008;97:1060–1070.
    1. Devine D.A., Hancock R.E.W. Cationic peptides: Distribution and mechanisms of resistance. Curr. Pharm. Des. 2002;8:703–714.
    1. Song Y.M., Park Y., Lim S.S., Yang S.T., Woo E.R., Park S., Lee J.S., Kim J.I., Hahm K.S., Kim Y., et al. Cell selectivity and mechanism of action of antimicrobial model peptides containing peptoid residues. Biochemistry. 2005;44:12094–12106.
    1. Fimland G., Johnsen L., Dalhus B., Nissen-Meyer J. Pediocin-like antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: Biosynthesis, structure, and mode of action. J. Pept. Sci. 2005;11:688–696.
    1. Hancock R.E.W., Lehrer R. Cationic peptides: A new source of antibiotics. Trends Biotechnol. 1998;16:82–88.
    1. Toke O. Antimicrobial peptides: New candidates in the fight against bacterial infections. Biopolymers. 2005;80:717–735.
    1. Hancock R.E., Sahl H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 2006;24:1551–1557.
    1. McAuliffe O., Ross R.P., Hill C. Lantibiotics: Structure, biosynthesis and mode of action. FEMS Microbiol. Rev. 2001;25:285–308.
    1. Hsu S.T., Breukink E., Tischenko E., Lutters M.A., Kruijff B., Kaptein R., Bonvin A.M., van Nuland N.A. The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat. Struct. Mol. Biol. 2004;11:963–967.
    1. Perlman D., Bodanszky M. Biosynthesis of peptide antibiotics. Annu. Rev. Biochem. 1971;40:449–464.
    1. Kleinkauf H., von Dohren H. Peptide antibiotics, β-lactams and related compounds. Crit. Rev. Biotechnol. 1988;8:1–32.
    1. Hancock R.E., Falla T., Brown M.H. Cationic bactericidal peptides. Adv. Microb. Physiol. 1995;37:135–175.
    1. Weidenmaier C., Kristian S.A., Peschel A. Bacterial resistance to antimicrobial host defenses—An emerging target for novel antiinfective strategies? Curr. Drug Targets. 2003;4:643–649.
    1. Koprivnjak T., Peschel A. Bacterial resistance mechanisms against host defense peptides. Cell. Mol. Life Sci. 2011;68:2243–2254.
    1. Saar-Dover R., Bitler A., Nezer R., Shmuel-Galia L., Firon A., Shimoni E., Trieu-Cuot P., Shai Y. D-alanylation of lipoteichoic acids confers resistance to cationic peptides in group B streptococcus by increasing the cell wall density. PLoS Pathog. 2012;8:e1002891.
    1. Palusińska-Szysz M., Zdybicka-Barabas A., Pawlikowska-Pawlęga B., Mak P., Cytryńska M. Anti-Legionella dumoffii activity of galleria mellonella defensin and apolipophorin III. Int. J. Mol. Sci. 2012;13:17048–17064.
    1. Papagianni M. Ribosomally synthesized peptides with antimicrobial properties: Biosynthesis, structure, function, and applications. Biotechnol. Adv. 2003;21:465–499.
    1. Cotter P.D., Hill C., Ross R.P. Bacteriocins: Developing innate immunity for food. Nat. Rev. Microbiol. 2005;3:777–788.
    1. Dufour A., Hindré T., Haras D., Le Pennec J.P. The biology of lantibiotics from the lacticin 481 group is coming of age. FEMS Microbiol. Rev. 2007;31:134–167.
    1. Gardiner G.E., Rea M.C., O'Riordan B., O'Connor P., Morgan S.M., Lawlor P.G., Lynch P.B., Cronin M., Ross R.P., Hill C. Fate of the two-component lantibiotic lacticin 3147 in the gastrointestinal tract. Appl. Environ. Microbiol. 2007;73:7103–7109.
    1. Svenson J., Brandsdal B.O., Stensen W., Svendsen J.S. Albumin binding of short cationic antimicrobial micropeptides and its influence on the in vitro bactericidal effect. J. Med. Chem. 2007;50:3334–3339.
    1. Svenson J., Stensen W., Brandsdal B.O., Haug B.E., Monrad J., Svendsen J.S. Antimicrobial peptides with stability toward tryptic degradation. Biochemistry. 2008;47:3777–3788.
    1. Makovitzki A., Shai Y. pH-dependent antifungal lipopeptides and their plausible mode of action. Biochemistry. 2005;44:9775–9784.
    1. Chongsiriwatana N.P., Miller T.M., Wetzler M., Vakulenko S., Karlsson A.J., Palecek S.P., Mobashery S., Barron A.E. Short alkylated peptoid mimics of antimicrobial lipopeptides. Antimicrob. Agents Chemother. 2011;55:417–420.
    1. Chongsiriwatana N.P., Barron A.E. Comparing bacterial membrane interactions of antimicrobial peptides and their mimics. Methods Mol. Biol. 2010;618:171–182.
    1. Findlay B., Szelemej P., Zhanel G.G., Schweizer F. Guanidylation and tail effects in cationic antimicrobial lipopeptoids. PLoS One. 2012;7:e41141.
    1. Findlay B., Zhanel G.G., Schweizer F. Investigating the antimicrobial peptide “Window of activity” using cationic lipopeptides with hydrocarbon and fluorinated tails. Int. J. Antimicrob. Agents. 2012;40:36–42.
    1. Munoz-Bonilla A., Fernandez-Garcia M. Polymeric materials with antimicrobial activity. Prog. Polym. Sci. 2012;37:281–339.
    1. Moreira Mdel R., Pereda M., Marcovich N.E., Roura S.I. Antimicrobial effectiveness of bioactive packaging materials from edible chitosan and casein polymers: Assessment on carrot, cheese, and salami. J. Food Sci. 2011;76:M54–M63.
    1. Kuroda K., Caputo G.A. Antimicrobial polymers as synthetic mimics of host-defense peptides. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013;5:49–66.
    1. Timofeeva L., Kleshcheva N. Antimicrobial polymers: Mechanism of action, factors of activity, and applications. Appl. Microbiol. Biotechnol. 2011;89:475–492.
    1. Kenawy E-R., Worley S.D., Broughton R. The chemistry and applications of antimicrobial polymers: A state-of-the-art review. Biomacromolecules. 2007;8:1359–1384.
    1. Renani H.B., Ghorbani M., Beni B.H., Karimi Z., Mirhosseini M., Zarkesh H., Kabiri A. Determination and comparison of specifics of nucleus pulposus cells of human intervertebral disc in alginate and chitosan-gelatin scaffolds. Adv. Biomed. Res. 2012;1 doi: 10.4103/2277-9175.102996.
    1. Totonelli G., Maghsoudlou P., Fishman J.M., Orlando G., Ansari T., Sibbons P., Birchall M.A., Pierro A., Eaton S., de Coppi P. Esophageal tissue engineering: A new approach for esophageal replacement. World J. Gastroenterol. 2012;18:6900–6907.
    1. Hickok N.J., Shapiro I.M. Immobilized antibiotics to prevent orthopaedic implant infections. Adv. Drug Deliv. Rev. 2012;64:1165–1176.
    1. Dai T., Tanaka M., Huang Y.Y., Hamblin M.R. Chitosan preparations for wounds and burns: Antimicrobial and wound-healing effects. Expert Rev. Anti-Infect. Ther. 2011;9:857–879.
    1. Bitar K.N., Raghavan S. Intestinal tissue engineering: Current concepts and future vision of regenerative medicine in the gut. Neurogastroenterol. Motil. 2012;24:7–19.
    1. Walker P.A., Aroom K.R., Jimenez F., Shah S.K., Harting M.T., Gill B.S., Cox C.S., Jr Advances in progenitor cell therapy using scaffolding constructs for central nervous system injury. Stem Cell Rev. 2009;5:283–300.
    1. Zhang Z., Hu J., Ma P.X. Nanofiber-based delivery of bioactive agents and stem cells to bone sites. Adv. Drug Deliv. Rev. 2012;64:1129–1141.
    1. Tan H., Ma R., Lin C., Liu Z., Tang T. Quaternized chitosan as an antimicrobial agent: Antimicrobial activity, mechanism of action and biomedical applications in orthopedics. Int. J. Mol. Sci. 2013;14:1854–1869.
    1. Valencia-Chamorro S.A., Palou L., Del Río M.A., Pérez-Gago M.B. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2011;51:872–900.
    1. Cagri A., Ustunol Z., Ryser E.T. Antimicrobial edible films and coatings. J. Food Prot. 2004;67:833–848.
    1. Vargas M., González-Martínez C. Recent patents on food applications of chitosan. Recent Pat. Food Nutr. Agric. 2010;2:121–128.
    1. Francolini I., Donelli G. Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol. Med. Microbiol. 2010;59:227–238.
    1. Bridier A., Sanchez-Vizuete Mdel P., Le Coq D., Aymerich S., Meylheuc T., Maillard J.Y., Thomas V., Dubois-Brissonnet F., Briandet R. Biofilms of a Bacillus subtilis hospital isolate protect Staphylococcus aureus from biocide action. PLoS One. 2012;7:e44506.
    1. Thallinger B., Prasetyo E.N., Nyanhongo G.S., Guebitz G.M. Antimicrobial enzymes: An emerging strategy to fight microbes and microbial biofilms. Biotechnol. J. 2013;8:97–109.
    1. Caro A., Humblot V., Méthivier C., Minier M., Salmain M., Pradier C.M. Grafting of lysozyme and/or poly(ethylene glycol) to prevent biofilm growth on stainless steel surfaces. J. Phys. Chem. B. 2009;113:2101–2109.
    1. Shukla A., Fleming K.E., Chuang H.F., Chau T.M., Loose C.R., Stephanopoulos G.N., Hammond P.T. Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials. 2010;31:2348–2357.
    1. Melo L.D., Carmona-Ribeiro A.M. Fungicidal nanoparticles of low toxicity from cationic lipid and polyelectrolytes. NSTI Nanotech. 2012;3:350–353.
    1. Pereira E.M., Kosaka P.M., Rosa H., Vieira D.B., Kawano Y., Petri D.F., Carmona-Ribeiro A.M. Hybrid materials from intermolecular associations between cationic lipid and polymers. J. Phys. Chem. B. 2008;112:9301–9310.
    1. Dvoracek C.M., Sukhonosova G., Benedik M.J., Grunlan J.C. Antimicrobial behavior of polyelectrolyte-surfactant thin film assemblies. Langmuir. 2009;25:10322–10328.
    1. Melo L.D., Palombo R.R., Petri D.F.S., Bruns M., Pereira E.M.A., Carmona-Ribeiro A.M. Structure-activity relationship for quaternary ammonium compounds hybridized with poly(methyl methacrylate) ACS Appl. Mater. Interfaces. 2011;3:1933–1939.
    1. Decher G., Hong J.D. Buildup of ultrathin multilayer films by a self-assembly process: II. Consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces. Ber. Bunsenges. Phys. Chem. 1991;95:1430–1434.
    1. Decher G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science. 1997;277:1232–1237.
    1. Song J., Kang H., Lee C., Hwang S.H., Jang J. Aqueous synthesis of silver nanoparticle embedded cationic polymer nanofibers and their antibacterial activity. ACS Appl. Mater. Interfaces. 2012;4:460–465.
    1. Fu J., Ji J., Yuan W., Shen J. Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials. 2005;26:6684–6692.
    1. Fu J., Ji J., Fan D., Shen J. Construction of antibacterial multilayer films containing nanosilver via layer-by-layer assembly of heparin and chitosan-silver ions complex. J. Biomed. Mater. Res. A. 2006;79:665–674.
    1. Cao H., Liu X. Silver nanoparticles-modified films versus biomedical device-associated infections. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010;2:670–684.
    1. Vieira D.B., Carmona-Ribeiro A.M. Cationic nanoparticles for delivery of amphotericin B: Preparation, characterization and activity in vitro. J. Nanobiotechnol. 2008;6 doi: 10.1186/1477-3155-6-6.
    1. Zhang L., Eisenberg A. Multiple morphologies of “Crew-Cut” aggregates of polystyrene-b-poly( acrylic acid) block copolymers. Science. 1995;268:1728–1731.
    1. Discher D.E., Eisenberg A. Polymer vesicles. Science. 2002;297:967–973.
    1. Du J.Z., Chen Y.M. Organic-inorganic hybrid nanoparticles with a complex hollow structure. Angew. Chem. Int. Ed. 2004;43:5084–5087.
    1. Du J.Z., Willcock H., Ieong N.S., O'Reilly R.K. pH-responsive chiral nanostructures. Aust. J. Chem. 2011;64:1041–1046.
    1. Du J.Z., Armes S.P. Preparation of primary amine-based block copolymer vesicles by direct dissolution in water and subsequent stabilization by sol-gel chemistry. Langmuir. 2008;24:13710–13716.
    1. Du J.Z., Armes S.P. Preparation of biocompatible zwitterionic block copolymer vesicles by direct dissolution in water and subsequent silicification within their membranes. Langmuir. 2009;25:9564–9570.
    1. Seyfriedsberger G., Rametsteiner K., Kern W. Polyethylene compounds with antimicrobial surface properties. Eur. Polym. J. 2006;42:3383–3389.
    1. Ignatova M., Voccia S., Gilbert B., Markova N., Cossement D., Gouttebaron R., Jérôme R., Jérôme C. Combination of electrografting and atom-transfer radical polymerization for making the stainless steel surface antibacterial and protein antiadhesive. Langmuir. 2006;22:255–262.
    1. Jiang X., Zhang G., Narain R., Liu S. Fabrication of two types of shell-cross-linked micelles with “inverted” structures in aqueous solution from schizophrenic water-soluble ABC triblock copolymer via click chemistry. Langmuir. 2009;25:2046–2054.
    1. Lutz J-F. Thermo-switchable materials prepared using the OEGMA-platform. Adv. Mater. 2011;23:2237–2243.
    1. Lutz J.F., Hoth A. Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate. Macromolecules. 2006;39:893–896.
    1. Zhang C., Zhu Y., Zhou C., Yuan W., Du J. Antibacterial vesicles by direct dissolution of a block copolymer in water. Polym. Chem. 2013;4:255–259.
    1. Dandekar A.M., Gouran H., Ibáñez A.M., Uratsu S.L., Agüero C.B., McFarland S., Borhani Y., Feldstein P.A., Bruening G., Nascimento R., et al. An engineered innate immune defense protects grapevines from Pierce disease. Proc. Natl. Acad. Sci. USA. 2012;109:3721–3725.
    1. Kiss E., Heine E.T., Hill K., He Y.C., Keusgen N., Pénzes C.B., Schnöller D., Gyulai G., Mendrek A., Keul H., et al. Membrane affinity and antibacterial properties of cationic polyelectrolytes with different hydrophobicity. Macromol. Biosci. 2012;12:1181–1189.
    1. Kusumo A., Bombalski L., Lin Q., Matyjaszewski K., Schneider J.W., Tilton R.D. High capacity, charge-selective protein uptake by polyelectrolyte brushes. Langmuir. 2007;23:4448–4454.
    1. Lee S.B., Koepsel R.R., Morley S.W., Matyjaszewski K., Sun Y., Russell A.J. Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules. 2004;5:877–882.
    1. Roy D., Knapp J.S., Guthrie J.T., Perrier S. Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromolecules. 2008;9:91–99.
    1. Huang J., Murata H., Koepsel R.R., Russell A.J., Matyjaszewski K. Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. Biomacromolecules. 2007;8:1396–1399.
    1. Rawlinson L.A., Ryan S.M., Mantovani G., Syrett J.A., Haddleton D.M., Brayden D.J. Antibacterial effects of poly(2-(dimethylamino ethyl)methacrylate) against selected gram-positive and gram-negative bacteria. Biomacromolecules. 2010;11:443–453.
    1. Dong H., Huang J., Koepsel R.R., Ye P., Russell A.J., Matyjaszewski K. Recyclable antibacterial magnetic nanoparticles grafted with quaternized poly(2-(dimethylamino)ethyl methacrylate) brushes. Biomacromolecules. 2011;12:1305–1311.
    1. Wang J., Yao K., Korich A.L., Li S., Ma S., Ploehn H.J., Iovine P.M., Wang C., Chu F., Tang C. Combining renewable gum rosin and lignin: Towards hydrophobic polymer composites by controlled polymerization. J. Polym. Sci. A. 2011;49:3728–3738.
    1. Yancheva E., Paneva D., Maximova V., Mespouille L., Dubois P., Manolova N., Rashkov I. Polyelectrolyte complexes between (cross-linked) N-carboxyethylchitosan and (quaternized) poly[2-(dimethylamino)ethyl methacrylate]: Preparation, characterization, and antibacterial properties. Biomacromolecules. 2007;8:976–984.
    1. Chen Y., Wilbon P.A., Chen Y.P., Zhou J., Nagarkatti M., Wang C., Chu F., Decho A.W., Tang C. Amphipathic antibacterial agents using cationic methacrylic polymers with natural rosin as pendant group. RSC Adv. 2012;2:10275–10282.
    1. Bucki R., Sostarecz A.G., Byfield F.J., Savage P.B., Janmey P.A. Resistance of the antibacterial agent ceragenin CSA-13 to inactivation by DNA of F-actin, and its activity in cystic fibrosis sputum. J. Antimicrob. Chemother. 2007;60:535–545.
    1. Bucki R., Namiot D.B., Namiot Z., Savage P.B., Janmey P.A. Salivary mucins inhibit antibacterial activity of cathelicidin-derived LL-37 peptide but not the cationic steroid CSA-13. J. Antimicrob. Chemother. 2008;62:329–335.
    1. Epand R.F., Pollard J.E., Wright J.O., Savage P.B., Epand R.M. Depolarization, bacterial membrane composition, and the antimicrobial action of ceragenins. Antimicrob. Agents Chemother. 2010;54:3708–3713.
    1. Lewis K. Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol. 2007;5:48–56.
    1. Coates A.R., Hu Y. Targeting non-multiplying organisms as a way to develop novel antimicrobials. Trends Pharmacol. Sci. 2008;29:143–150.
    1. Hurdle J.G., O'Neill A.J., Chopra I., Lee R.E. Targeting bacterial membrane function: An underexploited mechanism for treating persistent infections. Nat. Rev. Microbiol. 2011;9:62–75.
    1. Barry C.E., Boshoff H.I., Dartois V., Dick T., Ehrt S., Flynn J., Schnappinger D., Wilkinson R.J., Young D. The spectrum of latent tuberculosis: Rethinking the biology and intervention strategies. Nat. Rev. Microbiol. 2009;7:845–855.
    1. Sinclair K.D., Pham T.X., Farnsworth R.W., Williams D.L., Loc-Carrillo C., Horne L.A., Ingebretsen S.H., Bloebaum R.D. Development of a broad spectrum polymer-released antimicrobial coating for the prevention of resistant strain bacterial infections. J. Biomed. Mater. Res. A. 2012;100A:2732–2738.
    1. Green J.B., Fulghum T., Nordhaus M.A. Review of immobilized antimicrobial agents and methods for testing. Biointerphases. 2011;6:CL2–CL43.
    1. Engler A.C., Shukla A., Puranam S., Buss H.G., Jreige N., Hammond P.T. Effects of side group functionality and molecular weight on the activity of synthetic antimicrobial polypeptides. Biomacromolecules. 2011;12:1666–1674.
    1. Radzishevsky I.S., Rotem S., Bourdetsky D., Navon-Venezia S., Carmeli Y., Mor A. Improved antimicrobial peptides based on acyl-lysine oligomers. Nat. Biotechnol. 2007;25:657–659.
    1. Tew G.N., Scott R.W., Klein M.L., Degrado W.F. De novo design of antimicrobial polymers, foldamers, and small molecules: from discovery to practical applications. Acc. Chem. Res. 2010;43:30–39.
    1. Sovadinova I., Palermo E.F., Huang R., Thoma L.M., Kuroda K. Mechanism of polymer-induced hemolysis: Nanosized pore formation and osmotic lysis. Biomacromolecules. 2011;12:260–268.
    1. Stratton T.R., Applegate B.M., Youngblood J.P. Effect of steric hindrance on the properties of antibacterial and biocompatible copolymers. Biomacromolecules. 2011;12:50–56.
    1. Lienkamp K., Madkour A.E., Musante A., Nelson C.F., Nüsslein K., Tew G.N. Antimicrobial polymers prepared by ROMP with unprecedented selectivity: A molecular construction kit approach. J. Am. Chem. Soc. 2008;130:9836–9843.
    1. Li P., Poon Y.F., Li W., Zhu H.Y., Yeap S.H., Cao Y., Qi X., Zhou C., Lamrani M., Beuerman R.W., et al. A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat. Mater. 2011;10:149–156.
    1. Li P., Zhou C., Rayatpisheh S., Ye K., Poon Y.F., Hammond P.T., Duan H., Chan-Park M.B. Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity. Adv. Mater. 2012;24:4130–4137.
    1. Wang R., Wang L., Zhou L., Su Y., Qiu F., Wang D., Wu J., Zhu X., Yan D. The effect of a branched architecture on the antimicrobial activity of poly(sulfone amines) and poly(sulfone amine)/silver nanocomposites. J. Mater. Chem. 2012;22:15227–15234.
    1. Fox M.E., Szoka F.C., Fréchet J.M. Soluble polymer carriers for the treatment of cancer: The importance of molecular architecture. Acc. Chem. Res. 2009;42:1141–1151.
    1. Oikonomou E.K., Bethani A., Bokias G., Kallitsis J.K. Poly (sodium styrene sulfonate)-b-poly( methyl methacrylate) diblock copolymers through direct atom transfer radical polymerization: Influence of hydrophilic-hydrophobic balance on self-organization in aqueous solution. Eur. Polym. J. 2011;47:752–761.
    1. Song J., Kong H., Jang J. Enhanced antibacterial performance of cationic polymer modified silica nanoparticles. Chem. Commun. (Camb.) 2009;36:5418–5420.
    1. Nigmatullin R., Gao F., Konovalova V. Permanent, non-leaching antimicrobial polyamide nanocomposites based on organoclays modified with a cationic polymer. Macromol. Mater. Eng. 2009;294:795–805.
    1. Qian L., Guan Y., Ziaee Z., He B., Zheng A., Xiao H. Rendering cellulose fibers antimicrobial using cationic β-cyclodextrin-based polymers included with antibiotics. Cellulose. 2009;16:309–317.
    1. Pan Y., Xiao H., Zhao G., He B. Antimicrobial and thermal-responsive layer-by-layer assembly based on ionic-modified guanidine polymer and PVA. Polym. Bull. 2008;61:541–551.
    1. Pfaffenroth C., Winkel A., Dempwolf W., Gamble L.J., Castner D.G., Stiesch M., Menzel H. Self-assembled antimicrobial and biocompatible copolymer films on titanium. Macromol. Biosci. 2011;11:1515–1525.
    1. Malmsten M. Antimicrobial and antiviral hydrogels. Soft Matter. 2011;7:8725–8736.
    1. Llorens A., Lloret E., Picouet P.A., Trbojevich R., Fernandez A. Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci. Technol. 2012;24:19–29.
    1. Seil J.T., Webster T.J. Antimicrobial applications of nanotechnology: Methods and literature. Int. J. Nanomedicine. 2012;7:2767–2781.
    1. Li Y., Hindi K., Watts K.M., Taylor J.B., Zhang K., Li Z., Hunstad D.A., Cannon C.L., Youngs W.J., Wooley K.L. Shell crosslinked nanoparticles carrying silver antimicrobials as therapeutics. Chem. Commun. (Camb.) 2010;46:121–123.
    1. Ran J., Bénistant G., Campagne C., Périchaud A., Chai F., Blanchemain N., Perwuelz A. Characterization of nonwoven poly(ethylene terephtalate) devices functionalized with cationic polymer. J. Appl. Polym. Sci. 2012;124:3583–3590.
    1. Pan Y., Xiao H. Rendering rayon fibres antimicrobial and thermal-responsive via layer-by-layer self-assembly of functional polymers. Adv. Mater. Res. 2011:1103–1106.
    1. Kemp M.M., Kumar A., Clement D., Ajayan P., Mousa S., Linhardt R.J. Hyaluronan- and heparin-reduced silver nanoparticles with antimicrobial properties. Nanomedicine (Lond.) 2009;4:421–429.
    1. Chen J., Hessler J.A., Putchakayala K., Panama B.K., Khan D.P., Hong S., Mullen D.G., Dimaggio S.C., Som A., Tew G.N., et al. Cationic nanoparticles induce nanoscale disruption in living cell plasma membranes. J. Phys. Chem. B. 2009;113:11179–11185.
    1. Leroueil P.R., Berry S.A., Duthie K., Han G., Rotello V.M., McNerny D.Q., Baker J.R., Jr, Orr B.G., Holl M.M. Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano Lett. 2008;8:420–424.
    1. Epand R.F., Mowery B.P., Lee S.E., Stahl S.S., Lehrer R.I., Gellman S.H., Epand R.M. Dual mechanism of bacterial lethality for a cationic sequence-random copolymer that mimics host-defense antimicrobial peptides. J. Mol. Biol. 2008;379:38–50.
    1. Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomed. 2012;7:5577–5591.
    1. Rawlinson L.A., O'Gara J.P., Jones D.S., Brayden D.J. Resistance of Staphylococcus aureus to the cationic antimicrobial agent poly(2-(dimethylamino ethyl)methacrylate) (pDMAEMA) is influenced by cell-surface charge and hydrophobicity. J. Med. Microbiol. 2011;60:968–976.
    1. Rawlinson L.A., O'Brien P.J., Brayden D.J. High content analysis of cytotoxic effects of pDMAEMA on human intestinal epithelial and monocyte cultures. J. Control. Release. 2010;146:84–92.
    1. Nederberg F., Zhang Y., Tan J.P., Xu K., Wang H., Yang C., Gao S., Guo X.D., Fukushima K., Li L., et al. Biodegradable nanostructures with selective lysis of microbial membranes. Nat. Chem. 2011;3:409–414.
    1. Nitta S.K., Numata K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int. J. Mol. Sci. 2013;14:1629–1654.
    1. Kayitmazer A.B., Strand S.P., Tribet C., Jaeger W., Dubin P.L. Effect of polyelectrolyte structure on protein-polyelectrolyte coacervates: Coacervates of bovine serum albumin with poly (diallyldimethylammonium chloride) versus chitosan. Biomacromolecules. 2007;8:3568–3577.
    1. Chang Y., McLandsborough L., McClements D.J. Cationic antimicrobial (ɛ-polylysine)-anionic polysaccharide (pectin) interactions: Influence of polymer charge on physical stability and antimicrobial efficacy. J. Agric. Food Chem. 2012;60:1837–1844.
    1. Jones O.G., McClements D.J. Recent progress in biopolymer nanoparticle and microparticle formation by heat-treating electrostatic protein-polysaccharide complexes. Adv. Colloid Interface Sci. 2011;167:49–62.
    1. Wandrey C., Hernandez-Barajas J., Hunkeler D. Diallyldimethylammonium chloride and its polymers. Adv. Polym. Sci. 1999;145:123–183.
    1. Som A., Tew G.N. Influence of lipid composition on membrane activity of antimicrobial phenylene ethynylene oligomers. J. Phys. Chem. B. 2008;112:3495–3502.

Source: PubMed

Подписаться