Noisy neighbourhoods: quorum sensing in fungal-polymicrobial infections

Emily F Dixon, Rebecca A Hall, Emily F Dixon, Rebecca A Hall

Abstract

Quorum sensing was once considered a way in which a species was able to sense its cell density and regulate gene expression accordingly. However, it is now becoming apparent that multiple microbes can sense particular quorum-sensing molecules, enabling them to sense and respond to other microbes in their neighbourhood. Such interactions are significant within the context of polymicrobial disease, in which the competition or cooperation of microbes can alter disease progression. Fungi comprise a small but important component of the human microbiome and are in constant contact with bacteria and viruses. The discovery of quorum-sensing pathways in fungi has led to the characterization of a number of interkingdom quorum-sensing interactions. Here, we review the recent developments in quorum sensing in medically important fungi, and the implications these interactions have on the host's innate immune response.

© 2015 The Authors. Cellular Microbiology Published by John Wiley & Sons Ltd.

Figures

Figure 1
Figure 1
Common niches in which fungal quorum‐sensing interactions occur. Diagrammatic representation of the most common niches where polymicrobial interactions occur. Only key species are highlighted.
Figure 2
Figure 2
Key interkingdom quorum‐sensing interactions that occur in the cystic fibrosis lung. Diagrammatic representation of quorum‐sensing interactions occurring between fungal and bacterial colonizers of the cystic fibrosis lung. Green lines indicate where a quorum‐sensing molecule exerts a stimulatory effect (i.e. enhanced expression of virulence factors), while red lines indicate inhibition. SDSF, Stenotrophomonas diffusible signal factor; BDSF, Burkholderia diffusible signal factor, cis‐2‐dodecenoic acid.

References

    1. Abe, S. , Tsunashima, R. , Iijima, R. , Yamada, T. , Maruyama, N. , Hisajima, T. , et al (2009) Suppression of anti‐Candida activity of macrophages by a quorum‐sensing molecule, farnesol, through induction of oxidative stress. Microbiol Immunol 53: 323–330.
    1. Affeldt, K.J. , Brodhagen, M. , and Keller, N.P. (2012) Aspergillus oxylipin signaling in Cryptococcus neoformans and quorum sensing pathways depend on G protein‐coupled receptors. Toxins (Basel) 4: 695–717.
    1. Albuquerque, P. , and Casadevall, A. (2012) Quorum sensing in fungi – a review. Med Mycol 50: 337–45.
    1. Albuquerque, P. , Nicola, A.M. , Nieves, E. , Costa Paes, H. , Williamson, P.R. , Silva‐Pereira, I. , and Casadevall, A. (2013) Quorum sensing‐mediated, cell density‐dependent regulation of growth and virulence in Cryptococcus neoformans . MBio 5: 1–15.
    1. Bachtiar, E.W. , Bachtiar, B.M. , Jarosz, L.M. , Amir, L.R. , Sunarto, H. , Ganin, H. , et al (2014) AI‐2 of Aggregatibacter actinomycetemcomitans inhibits Candida albicans biofilm formation. Front Cell Infect Microbiol 4: 1–8.
    1. Bakare, N. , Rickerts, V. , and Bargon, J. (2003) Prevalence of Aspergillus fumigatus and other fungal species in the sputum of adult patients with cystic fibrosis. Mycoses 46: 19–23.
    1. Bamford, C.V. , D'Mello, A. , Nobbs, A.H. , Dutton, L.C. , Vickerman, M.M. , and Jenkinson, H.F. (2009) Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect Immun 77: 3696–3704.
    1. Barber, C.E. , Tang, J.L. , Feng, J.X. , Pan, M.Q. , Wilson, T.J. , Slater, H. , et al (1997) A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol 24: 555–566.
    1. Bonfante, P. , and Anca, I.‐A. (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63: 363–383.
    1. Boon, C. , Deng, Y. , Wang, L.‐H. , He, Y. , Xu, J.‐L. , Fan, Y. , et al (2008) A novel DSF‐like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME J 2: 27–36.
    1. Brasch, J. , Horter, F. , Fritsch, D. , Beck‐Jendroschek, V. , Tröger, A. , and Francke, W. (2013) Acyclic sesquiterpenes released by Candida albicans inhibit growth of dermatophytes. Med Mycol 52: 1–10.
    1. Brehm‐Stecher, B.F. , and Johnson, E.A. (2003) Sensitization of Staphylococcus aureus and Escherichia coli to antibiotics by the sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone. Antimicrob Agents Chemother 47: 3357–3360.
    1. Briard, B. , Bomme, P. , Lechner, B.E. , Mislin, G.L. , Lair, V. , Prévost, M.C. , et al (2015) Pseudomonas aeruginosa manipulates redox and iron homeostasis of its microbiota partner Aspergillus fumigatus via phenazines. Sci Rep 5: 8220.
    1. Brilhante, R.S.N. , Valente, L.G.A. , Rocha, M.F.G. , Bandeira, T.J.P.G. , Cordeiro, R.A. , Lima, R.A.C. , et al (2012) Sesquiterpene farnesol contributes to increased susceptibility to β‐lactams in strains of Burkholderia pseudomallei . Antimicrob Agents Chemother 56: 2198–2200.
    1. Chen, H. , Fujita, M. , Feng, Q. , Clardy, J. , and Fink, G.R. (2004) Tyrosol is a quorum‐sensing molecule in Candida albicans . Proc Natl Acad Sci U S A 101: 5048–52.
    1. Chin‐A‐Woeng, T.F.C. , Bloemberg, G.V. , van der Bij, A.J. , van der Drift, K.M.G.F. , Schripsema, J. , Kroon, B. , et al (1998) Biocontrol by phenazine‐1‐carboxamide‐producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. Radicis‐lycopersici 11: 1069–1077.
    1. Chmiel, J.F. , Aksamit, T.R. , Chotirmall, S.H. , Dasenbrook, E.C. , Elborn, J.S. , LiPuma, J.J. , et al (2014) Antibiotic management of lung infections in cystic fibrosis: part I. The microbiome, MRSA, Gram‐negative bacteria, and multiple infections. Ann Am Thorac Soc 11: 1298–1306.
    1. Chotirmall, S. , Greene, C.M. , and McElvaney, N.G. (2010) Candida species in cystic fibrosis: a road less travelled. Med Mycol 48: 114–24.
    1. Cordeiro, R.D.A. , Nogueira, G.C. , Brilhante, R.S.N. , Teixeira, C.E.C. , Mourão, C.I. , Castelo‐Branco, D.D.S.C.M. , et al (2012) Farnesol inhibits in vitro growth of the Cryptococcus neoformans species complex with no significant changes in virulence‐related exoenzymes. Vet Microbiol 159: 375–380.
    1. Cruz, M.R. , Graham, C.E. , Gagliano, B.C. , Lorenz, M.C. , and Garsin, D.A. (2013) Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans . Infect Immun 81: 189–200.
    1. Cugini, C. , Calfee, M.W. , Farrow, J.M. , Morales, D.K. , Pesci, E.C. , and Hogan, D.A. (2007) Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa . Mol Microbiol 65: 896–906.
    1. Cugini, C. , Morales, D.K. , and Hogan, D.A. (2010) Candida albicans‐produced farnesol stimulates Pseudomonas quinolone signal production in LasR‐defective Pseudomonas aeruginosa strains. Microbiology 156: 3096–107.
    1. Davis‐Hanna, A. , Piispanen, A.E. , Stateva, L.I. , and Hogan, D.A. (2008) Farnesol and dodecanol effects on the Candida albicans Ras1‐cAMP signalling pathway and the regulation of morphogenesis. Mol Microbiol 67: 47–62.
    1. Deng, Y. , Boon, C. , Chen, S. , Lim, A. , and Zhang, L.‐H. (2013) Cis‐2‐Dodecenoic acid signal modulates virulence of Pseudomonas aeruginosa through interference with quorum sensing systems and T3SS. BMC Microbiol 13: 1–11.
    1. Deng, Y. , Wu, J. , Eberl, L. , and Zhang, L.H. (2010) Structural and functional characterization of diffusible signal factor family quorum‐sensing signals produced by members of the Burkholderia cepacia complex. Appl Environ Microbiol 76: 4675–4683.
    1. Derengowski, L.S. , De‐Souza‐Silva, C. , Braz, S.V. , Mello‐De‐Sousa, T.M. , Báo, S.N. , Kyaw, C.M. , and Silva‐Pereira, I. (2009) Antimicrobial effect of farnesol, a Candida albicans quorum sensing molecule, on Paracoccidioides brasiliensis growth and morphogenesis. Ann Clin Microbiol Antimicrob 8: 1–9.
    1. Deslandes, L. , Olivier, J. , Peeters, N. , Feng, D.X. , Khounlotham, M. , Boucher, C. , et al (2003) Physical interaction between RRS1‐R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci U S A 100: 8024–8029.
    1. Deveau, A. , Piispanen, A.E. , Jackson, A.A. , and Hogan, D.A. (2010) Farnesol induces hydrogen peroxide resistance in Candida albicans yeast by inhibiting the Ras‐cyclic AMP signaling pathway. Eukaryot Cell 9: 569–77.
    1. Diaz, P.I. , Xie, Z. , Sobue, T. , Thompson, A. , Biyikoglu, B. , Ricker, A. , et al (2012) Synergistic interaction between Candida albicans and commensal oral streptococci in a novel in vitro mucosal model. Infect Immun 80: 620–32.
    1. Dichtl, K. , Ebel, F. , Dirr, F. , Routier, F.H. , Heesemann, J. , and Wagener, J. (2010) Farnesol misplaces tip‐localized Rho proteins and inhibits cell wall integrity signalling in Aspergillus fumigatus . Mol Microbiol 76: 1191–1204.
    1. DiMango, E. , Zar, H.J. , Bryan, R. , and Prince, A. (1995) Diverse Pseudomonas aeruginosa gene products stimulate respiratory epithelial cells to produce interleukin‐8. J Clin Invest 96: 2204–2210.
    1. Elias, S. , and Banin, E. (2012) Multi‐species biofilms: living with friendly neighbors. FEMS Microbiol Rev 36: 990–1004.
    1. Feldmesser, M. , Kress, Y. , and Novikoff, P. (2000) Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. Infect Immun 68: 4225–4237.
    1. Flannagan, R.S. , Cosío, G. , and Grinstein, S. (2009) Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol 7: 355–66.
    1. Frey‐Klett, P. , Burlinson, P. , Deveau, A. , Barret, M. , Tarkka, M. , and Sarniguet, A. (2011) Bacterial‐fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75: 583–609.
    1. Fujiya, M. , Musch, M.W. , Nakagawa, Y. , Hu, S. , Alverdy, J. , Kohgo, Y. , et al (2007) The Bacillus subtilis quorum‐sensing molecule CSF contributes to intestinal homeostasis via OCTN2, a host cell membrane transporter. Cell Host Microbe 1: 299–308.
    1. Ghosh, S. , Howe, N. , Volk, K. , Tati, S. , Nickerson, K.W. , and Petro, T.M. (2010) Candida albicans cell wall components and farnesol stimulate the expression of both inflammatory and regulatory cytokines in the murine RAW264.7 macrophage cell line. FEMS Immunol Med Microbiol 60: 63–73.
    1. Gobbetti, M. (1998) The sourdough microflora : interactions of lactic acid bacteria and yeasts. Trends Food Sci Technol 9: 267–274.
    1. Gomes, F. , Leite, B. , Teixeira, P. , Cerca, N. , Azeredo, J. , and Oliveira, R. (2011) Farnesol as antibiotics adjuvant in Staphylococcus epidermidis control in vitro . Am J Med Sci 341: 191–195.
    1. Gomes, F. , Teixeira, P. , Cerca, N. , Azeredo, J. , and Oliveira, R. (2011) Effect of farnesol on structure and composition of Staphylococcus epidermidis biofilm matrix. Curr Microbiol 63: 354–359.
    1. Hall, R.A. , Turner, K.J. , Chaloupka, J. , Cottier, F. , Sordi, L.D. , Sanglard, D. , et al (2011) The quorum‐sensing molecules farnesol/homoserine lactone and dodecanol operate via distinct modes of action in Candida albicans . Eukaryot Cell 10: 1034–42.
    1. Harriott, M.M. , and Noverr, M.C. (2011) Importance of Candida‐bacterial polymicrobial biofilms in disease. Trends Microbiol 19: 557–63.
    1. Harris, J.K. , Groote, M.A.D. , Sagel, S.D. , Zemanick, E.T. , Kapsner, R. , Penvari, C. , et al (2007) Molecular identification of bacteria in bronchoalveolar lavage fluid from children with cystic fibrosis. Proc Natl Acad Sci U S A 104: 20529–20533.
    1. Head, M.G. , Fitchett, J.R. , Atun, R. , and May, R.C. (2013) Systematic analysis of funding awarded for mycology research to institutions in the UK, 1997–2010. BMJ Open 4: 1–6.
    1. Hogan, D.A. (2006) Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryot Cell 5: 613–619.
    1. Hogan, D.A. , and Kolter, R. (2002) Pseudomonas–Candida interactions: an ecological role for virulence factors. Science 296: 2229–2232.
    1. Hogan, D.A. , and Muhlschlegel, F.A. . (2011) Candida albicans developmental regulation: adenylyl cyclase as a coincidence detector of parallel signals. Curr Opin Microbiol 14: 682–686.
    1. Hogan, D.A. , Vik, A. , and Kolter, R. (2004) A Pseudomonas aeruginosa quorum‐sensing molecule influences Candida albicans morphology. Mol Microbiol 54: 1212–23.
    1. Hooper, L.V. , and Gordon, J.I. (2001) Commensal host‐bacterial relationships in the gut. Science 292: 1115–1118.
    1. Hornby, J. , Jensen, E. , and Lisec, A. (2001) Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67: 2982–2992.
    1. Huber, A.R. , Kunkel, S.L. , Todd, R.F. , and Weiss, S.J. (1991) Regulation of transendothelial neutrophil migration by endogenous interleukin‐8. Science 254: 99–102.
    1. Jones, A.M. , Dodd, M.E. , Govan, J.R.W. , Barcus, V. , Doherty, C.J. , Morris, J. , and Webb, A.K. (2004) Burkholderia cenocepacia and Burkholderia multivorans: influence on survival in cystic fibrosis. Thorax 59: 948–951.
    1. Joo, J.H. , and Jetten, A.M. (2008) NF‐κB‐dependent transcriptional activation in lung carcinoma cells by farnesol involves p65/RelA(Ser276) phosphorylation via the MEK‐MSK1 signaling pathway. J Biol Chem 283: 16391–16399.
    1. Joo, J.H. , and Jetten, A.M. (2010) Molecular mechanisms involved in farnesol‐induced apoptosis. Cancer Lett 287: 123–135.
    1. Kau, A.L. , Ahern, P.P. , Griffin, N.W. , Goodman, A.L. , and Gordon, J.I. (2011) Human nutrition, the gut microbiome and the immune system. Nature 474: 327–336.
    1. Kebaara, B.W. , Langford, M.L. , Navarathna, D.H.M.L.P. , Dumitru, R. , Nickerson, K.W. , and Atkin, A.L. (2008) Candida albicans Tup1 is involved in farnesol‐mediated inhibition of filamentous‐growth induction. Eukaryot Cell 7: 980–7.
    1. Kerr, J.R. (1996) Inhibition of growth of fungi pathogenic to man by Stenotrophomonas maltophilia . J Med Microbiol 45: 380–382.
    1. Klengel, T. , Liang, W.‐J. , Chaloupka, J. , Ruoff, C. , Schröppel, K. , Naglik, J.R. , et al (2005) Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr Biol 15: 2021–6.
    1. Kruppa, M. , Krom, B.P. , Chauhan, N. , Bambach, A. V, Cihlar, R.L. , and Calderone, R.A. (2004) The two‐component signal transduction protein Chk1p regulates quorum sensing in Candida albicans . Eukaryot Cell 3: 1062–5.
    1. Lee, H. , Chang, Y.C. , Nardone, G. , and Kwon‐Chung, K.J. (2007) TUP1 disruption in Cryptococcus neoformans uncovers a peptide‐mediated density‐dependent growth phenomenon that mimics quorum sensing. Mol Microbiol 64: 591–601.
    1. Lee, R.J. , Chen, B. , Redding, K.M. , Margolskee, R.F. , and Cohen, N.A. (2013) Mouse nasal epithelial innate immune responses to Pseudomonas aeruginosa quorum‐sensing molecules require taste signaling components. Innate Immun 20: 606–617.
    1. Leonhardt, I. , Spielberg, S. , Weber, M. , Albrecht‐eckardt, D. , Bläss, M. , Claus, R. , et al (2015) The fungal quorum‐sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity. MBio 6: 1–14.
    1. LiPuma, J.J. (2010) The changing microbial epidemiology in cystic fibrosis. Clin Microbiol Rev 23: 299–323.
    1. Liu, P. , Deng, B. , Long, C.A. , and Min, X. (2009) Effect of farnesol on morphogenesis in the fungal pathogen Penicillium expansum . Ann Microbiol 59: 33–38.
    1. McKenzie, F.E. (2006) Case mortality in polymicrobial bloodstream infections. J Clin Epidemiol 59: 760–761.
    1. Mohammadi, R. , Badiee, P. , Badali, H. , Abastabar, M. , Safa, A.H. , Hadipour, M. , et al (2015) Use of restriction fragment length polymorphism to identify Candida species, related to onychomycosis. Adv Biomed Res 4: 95–111.
    1. Morales, D.K. , Grahl, N. , Okegbe, C. , Dietrich, L.E. , Jacobs, N.J. , Hogan, D.A. , et al (2013) Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines. MBio 4: e00526–12.
    1. Mowat, E. , Rajendran, R. , Williams, C. , McCulloch, E. , Jones, B. , Lang, S. , and Ramage, G. (2010) Pseudomonas aeruginosa and their small diffusible extracellular molecules inhibit Aspergillus fumigatus biofilm formation. FEMS Microbiol Lett 313: 96–102.
    1. Nakayama, J. , Chen, S. , Oyama, N. , Nishiguchi, K. , Azab, E.A. , Tanaka, E. , et al (2006) Revised model for Enterococcus faecalis fsr quorum‐sensing system: the small open reading frame fsrD encodes the gelatinase biosynthesis‐activating pheromone propeptide corresponding to staphylococcal AgrD. J Bacteriol 188: 8321–8326.
    1. Newton, A.C. , Fitt, B.D.L. , Atkins, S.D. , Walters, D.R. , and Daniell, T.J. (2010) Pathogenesis, parasitism and mutualism in the trophic space of microbe‐plant interactions. Trends Microbiol 18: 365–373.
    1. Nobbs, A.H. , and Jenkinson, H.F. (2015) Interkingdom networking within the oral microbiome. Microbes Infect 17: 484–492.
    1. Pammi, M. , Liang, R. , Hicks, J.M. , Barrish, J. , and Versalovic, J. (2011) Farnesol decreases biofilms of Staphylococcus epidermidis and exhibits synergy with nafcillin and vancomycin. Pediatr Res 70: 578–583.
    1. Pammi, M. , Zhong, D. , Johnson, Y. , Revell, P. , and Versalovic, J. (2014) Polymicrobial bloodstream infections in the neonatal intensive care unit are associated with increased mortality: a case‐control study. BMC Infect Dis 14: 1–8.
    1. Partida‐Martinez, L.P. , Groth, I. , Schmitt, I. , Richter, W. , Roth, M. , and Hertweck, C. (2007) Burkholderia rhizoxinica sp. nov. and Burkholderia endofungorum sp. nov., bacterial endosymbionts of the plant‐pathogenic fungus Rhizopus microsporous . Int J Syst Evol Microbiol 57: 2583–2590.
    1. Partida‐Martinez, L.P. , and Hertweck, C. (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437: 884–888.
    1. Peleg, A.Y. , Hogan, D.A. , and Mylonakis, E. (2010) Medically important bacterial–fungal interactions. Nat Rev Microbiol 8: 340–9.
    1. Peleg, A.Y. , Tampakakis, E. , Fuchs, B.B. , Eliopoulos, G.M. , Moellering, R.C. , and Mylonakis, E. (2008) Prokaryote–eukaryote interactions identified by using Caenorhabditis elegans . Proc Natl Acad Sci U S A 105: 14585–90.
    1. Raina, S. , Vizio, D.D. , Odell, M. , Clements, M. , Vanhulle, S. , and Keshavarz, T. (2009) Microbial quorum sensing: a tool or a target for antimicrobial therapy? Biotechnol Appl Biochem 54: 65–84.
    1. Ramage, G. , and Saville, S. (2002) Inhibition of Candida albicans biofilm formation by farnesol, a quorum‐sensing molecule. Appl Environ Microbiol 68: 5459–5463.
    1. Rasmussen, T.B. , Skindersoe, M.E. , Bjarnsholt, T. , Phipps, R.K. , Christensen, K.B. , Jensen, P.O. , et al (2005) Identity and effects of quorum‐sensing inhibitors produced by Penicillium species. Microbiology 151: 1325–1340.
    1. Rennemeier, C. , Frambach, T. , Hennicke, F. , Dietl, J. , and Staib, P. (2009) Microbial quorum‐sensing molecules induce acrosome loss and cell death in human spermatozoa. Infect Immun 77: 4990–4997.
    1. Rolston, K.V.I. , Bodey, G.P. , and Safdar, A. (2007) Polymicrobial infection in patients with cancer: an underappreciated and underreported entity. Clin Infect Dis 45: 228–233.
    1. Ryan, R.P. , and Dow, J.M. (2011) Communication with a growing family: diffusible signal factor (DSF) signaling in bacteria. Trends Microbiol 19: 145–152.
    1. Ryan, R.P. , Fouhy, Y. , Garcia, B.F. , Watt, S.A. , Niehaus, K. , Yang, L. , et al (2008) Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa . Mol Microbiol 68: 75–86.
    1. Saini, L.S. , Galsworthy, S.B. , John, M.A. , and Valvano, M.A. (1999) Intracellular survival of Burkholderia cepacia complex isolates in the presence of macrophage cell activation. Microbiology 145: 3465–3475.
    1. Sato, T. , Watanabe, T. , Mikami, T. , and Matsumoto, T. (2004) Farnesol, a morphogenetic autoregulatory substance in the dimorphic fungus Candida albicans, inhibits hyphae growth through suppression of a mitogen‐activated protein kinase cascade. Biol Pharm Bull 27: 751–2.
    1. Schmid, A. , Sutto, Z. , Nlend, M.‐C. , Horvath, G. , Schmid, N. , Buck, J. , et al (2007) Soluble adenylyl cyclase is localized to cilia and contributes to ciliary beat frequency regulation via production of cAMP. J Gen Physiol 130: 99–109.
    1. Seider, K. , Heyken, A. , Lüttich, A. , Miramón, P. , and Hube, B. (2010) Interaction of pathogenic yeasts with phagocytes: survival, persistence and escape. Curr Opin Microbiol 13: 392–400.
    1. Semighini, C.P. , Hornby, J.M. , Dumitru, R. , Nickerson, K.W. , and Harris, S.D. (2006) Farnesol‐induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi. Mol Microbiol 59: 753–764.
    1. Shirtliff, M.E. , Krom, B.P. , Meijering, R.A.M. , Peters, B.M. , Zhu, J. , Scheper, M.A. , et al (2009) Farnesol‐induced apoptosis in Candida albicans . Antimicrob Agents Chemother 53: 2392–2401.
    1. Sibley, C.D. , Parkins, M.D. , Rabin, H.R. , Duan, K. , Norgaard, J.C. , and Surette, M.G. (2008) A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients. Proc Natl Acad Sci U S A 105: 15070–15075.
    1. Smith, R.S. , Fedyk, E.R. , Springer, T.A. , Mukaida, N. , Iglewski, B.H. , and Phipps, R.P. (2001) IL‐8 production in human lung fibroblasts and epithelial cells activated by the Pseudomonas autoinducer N‐3‐oxododecanoyl homoserine lactone is transcriptionally regulated by NF‐kappa B and activator protein‐2. J Immunol 167: 366–374.
    1. Soll, D.R. (2002) Mixed Mycotic Infections In Polymicrobial Diseases. ASM Press, Washington, DC, USA: pp. 1–27.
    1. Sordi, L.D. , and Mühlschlegel, F.A. (2009) Quorum sensing and fungal‐bacterial interactions in Candida albicans: a communicative network regulating microbial coexistence and virulence. FEMS Yeast Res 9: 990–999.
    1. Sun, J. , Daniel, R. , Wagner‐Döbler, I. , and Zeng, A.‐P. (2004) Is autoinducer‐2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. BMC Evol Biol 4 36.
    1. Tian, J. , Weng, L.X. , Zhang, Y.Q. , and Wang, L.H. (2013) BDSF inhibits Candida albicans adherence to urinary catheters. Microb Pathog 64: 33–38.
    1. Tseng, C.C. , and Fink, G.R. (2008) Quorum Sensing in Fungi In Chemical Communication Among Bacteria. Winans S.C., and Bassler B.L. (eds). Washington, DC: ASM Press.
    1. Tupe, S.G. , Kulkarni, R.R. , Shirazi, F. , Sant, D.G. , Joshi, S.P. , Deshpande, M.V. , et al (2015) Possible mechanism of antifungal phenazine‐1‐carboxamide from Pseudomonas sp. against dimorphic fungi Benjaminiella poitrasii and human pathogen Candida albicans. J Appl Microbiol 118: 39–48.
    1. Uroz, S. , and Heinonsalo, J. (2008) Degradation of N‐acyl homoserine lactone quorum sensing signal molecules by forest root‐associated fungi. FEMS Microbiol Ecol 65: 271–278.
    1. Valenza, G. , Tappe, D. , Turnwald, D. , Frosch, M. , König, C. , Hebestreit, H. , and Abele‐Horn, M. (2008) Prevalence and antimicrobial susceptibility of microorganisms isolated from sputa of patients with cystic fibrosis. J Cyst Fibros 7: 123–127.
    1. Viljoen, B.C. (2001) The interaction between yeasts and bacteria in dairy environments. Int J Food Microbiol 69: 37–44.
    1. Waters, C.M. , and Bassler, B.L. (2005) Quorum sensing: cell‐to‐cell communication in bacteria. Annu Rev Cell Dev Biol 21: 319–346.
    1. Waters, V. , Yau, Y. , Prasad, S. , Lu, A. , Atenafu, E. , Crandall, I. , et al (2011) Stenotrophomonas maltophilia in cystic fibrosis: serologic response and effect on lung disease. Am J Respir Crit Care Med 183: 635–640.
    1. Westwater, C. , Balish, E. , and Schofield, D.A. (2005) Candida albicans‐conditioned medium protects yeast cells from oxidative stress: a possible link between quorum sensing and oxidative stress resistance. Eukaryot Cell 4: 1654–1661.
    1. Williams, P. , and Cámara, M. (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12: 182–91.
    1. Winstanley, C. , and Fothergill, J.L. (2009) The role of quorum sensing in chronic cystic fibrosis Pseudomonas aeruginosa infections. FEMS Microbiol Lett 290: 1–9.
    1. Wong, C.S. , Koh, C.L. , Sam, C.K. , Chen, J.W. , Chong, Y.M. , Yin, W.F. , and Chan, K.G. (2013) Degradation of bacterial quorum sensing signaling molecules by the microscopic yeast Trichosporon loubieri isolated from tropical wetland waters. Sensors (Basel) 13: 12943–12957.
    1. Xu, X.‐L.L. , Lee, R.T.H. , Fang, H.‐M.M. , Wang, Y.Y.‐M.M. , Li, R. , Zou, H. , et al (2008) Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe 4: 28–39.

Source: PubMed

Подписаться