Sarcopenia in Neurological Patients: Standard Values for Temporal Muscle Thickness and Muscle Strength Evaluation

Ariane Steindl, Johannes Leitner, Matthias Schwarz, Karl-Heinz Nenning, Ulrika Asenbaum, Sophie Mayer, Ramona Woitek, Michael Weber, Veronika Schöpf, Anna S Berghoff, Thomas Berger, Georg Widhalm, Daniela Prayer, Matthias Preusser, Julia Furtner, Ariane Steindl, Johannes Leitner, Matthias Schwarz, Karl-Heinz Nenning, Ulrika Asenbaum, Sophie Mayer, Ramona Woitek, Michael Weber, Veronika Schöpf, Anna S Berghoff, Thomas Berger, Georg Widhalm, Daniela Prayer, Matthias Preusser, Julia Furtner

Abstract

Temporal muscle thickness (TMT) was investigated as a novel surrogate marker on MRI examinations of the brain, to detect patients who may be at risk for sarcopenia. TMT was analyzed in a retrospective, normal collective cohort (n = 624), to establish standard reference values. These reference values were correlated with grip strength measurements and body mass index (BMI) in 422 healthy volunteers and validated in a prospective cohort (n = 130) of patients with various neurological disorders. Pearson correlation revealed a strong association between TMT and grip strength (retrospective cohort, ρ = 0.746; p < 0.001; prospective cohort, ρ = 0.649; p < 0.001). A low or no association was found between TMT and age (retrospective cohort, R2 correlation coefficient 0.20; p < 0.001; prospective cohort, ρ = -0.199; p = 0.023), or BMI (retrospective cohort, ρ = 0.116; p = 0.042; prospective cohort, ρ = 0.227; p = 0.009), respectively. Male patients with temporal wasting and unintended weight loss, respectively, showed significantly lower TMT values (p = 0.04 and p = 0.015, unpaired t-test). TMT showed a high correlation with muscle strength in healthy individuals and in patients with various neurological disorders. Therefore, TMT should be integrated into the diagnostic workup of neurological patients, to prevent, delay, or treat sarcopenia.

Keywords: cranial MRI; muscle strength; reference values; sarcopenia; temporal muscle thickness.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Overview of the type of clinical and functional data collected. The study was approved by the ethics committee of the Medical University of Vienna (1406/2017).
Figure 2
Figure 2
Anatomical landmarks represented with white lines (ac) and an example of a TMT measurement in a healthy volunteer on T1-weighted, non-contrast-enhanced cranial MR images depicted in red (c).
Figure 3
Figure 3
Correlation between mean TMT values and grip strength of male (blue) and female (pink) healthy volunteers.
Figure 4
Figure 4
Correlation between age and mean TMT values in male (blue) and female (pink) healthy volunteers.
Figure 5
Figure 5
Correlation between mean TMT values and grip strength in the overall patient population (a) and subdivided into the different disease entities of neuro-oncological patients (b), patients with cerebrovascular disease (c), patients with demyelinating disease of the central nervous system (d), patients with psychiatric disorders (e), and patients with “other disease entities” (f).
Figure 6
Figure 6
Adapted algorithm for sarcopenia case identification, diagnosis, and quantification of severity in patients with neurological disorders (modified after Cruz-Jentoft et al., 2019) [2]. Abbrevations: BIA: bioelectrical impedance analysis; CT: computer tomography; DXA: dual energy x-ray; MRI: magnet resonance imaging; SARC-F: sarcopenia questionnaire; SPPB: short physical performance battery; TMT: temporal muscle thickness; TUG: time up and go.

References

    1. Bauer J., Morley J.E., Schols A.M., Ferrucci L., Cruz-Jentoft A.J., Dent E., Baracos V.E., Crawford J.A., Doehner W., Heymsfield S.B., et al. Sarcopenia: A time for action. An SCWD position paper. J. Cachexia Sarcopenia Muscle. 2019;10:956–961. doi: 10.1002/jcsm.12483.
    1. Cruz-Jentoft A.J., Bahat G., Bauer J., Boirie Y., Bruyère O., Cederholm T., Cooper C., Landi F., Rolland Y., Sayer A.A., et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31. doi: 10.1093/ageing/afy169.
    1. De Buyser S.L., Petrovic M., Taes Y.E., Toye K.R.C., Kaufman J.-M., Lapauw B., Goemaere S. Validation of the FNIH sarcopenia criteria and SOF frailty index as predictors of long-term mortality in ambulatory older men. Age Ageing. 2016;45:603–608. doi: 10.1093/ageing/afw071.
    1. Malmstrom T.K., Miller U.K., Simonsick E.M., Ferrucci L., Morley J.E. SARC-F: A symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J. Cachexia Sarcopenia Muscle. 2015;7:28–36. doi: 10.1002/jcsm.12048.
    1. Schaap L., Van Schoor N., Lips P., Visser M. Associations of sarcopenia definitions, and their components, with the incidence of recurrent falling and fractures: The longitudinal aging study Amsterdam. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2017;73:1199–1204. doi: 10.1093/gerona/glx245.
    1. Bischoff-Ferrari H.A., Orav J.E., Kanis J.A., Rizzoli R., Schlogl M., Staehelin H.B., Willett W.C., Dawson-Hughes B. Comparative performance of current definitions of sarcopenia against the prospective incidence of falls among community-dwelling seniors age 65 and older. Osteoporos. Int. 2015;26:2793–2802. doi: 10.1007/s00198-015-3194-y.
    1. Mijnarends D.M., Luiking Y.C., Halfens R.J.G., Evers S.M.A.A., Lenaerts E.L.A., Verlaan S., Wallace M., Schols J.M.G.A., Meijers J.M.M. Muscle, health and costs: A glance at their relationship. J. Nutr. Health Aging. 2018;22:766–773. doi: 10.1007/s12603-018-1058-9.
    1. Beaudart C., McCloskey E.V., Bruyère O., Cesari M., Rolland Y., Rizzoli R., De Carvalho I.A., Thiyagarajan J.A., Bautmans I., Bertière M.-C., et al. Sarcopenia in daily practice: Assessment and management. BMC Geriatr. 2016;16:170. doi: 10.1186/s12877-016-0349-4.
    1. Buckinx F., Landi F., Cesari M., Fielding R.A., Visser M., Engelke K., Maggi S., Dennison E.M., Al-Daghri N.M., Allepaerts S., et al. Pitfalls in the measurement of muscle mass: A need for a reference standard. J. Cachexia Sarcopenia Muscle. 2018;9:269–278. doi: 10.1002/jcsm.12268.
    1. Masanés F., Luque X.R.I., Salvà A., Serra-Rexach J.A., Artaza I., Formiga F., Cuesta F., Soto A.L., Ruiz D., Cruz-Jentoft A.J. Cut-off points for muscle mass—Not grip strength or gait speed—Determine variations in sarcopenia prevalence. J. Nutr. Health Aging. 2016;21:825–829. doi: 10.1007/s12603-016-0844-5.
    1. Hull H., He Q., Thornton J., Javed F., Allen L., Wang J., Pierson R.N., Gallagher D. iDXA, prodigy, and DPXL dual-energy X-ray absorptiometry whole-body scans: A cross-calibration study. J. Clin. Densitom. 2008;12:95–102. doi: 10.1016/j.jocd.2008.09.004.
    1. Sergi G., De Rui M., Veronese N., Bolzetta F., Berton L., Carraro S., Bano G., Coin A., Manzato E., Perissinotto E. Assessing appendicular skeletal muscle mass with bioelectrical impedance analysis in free-living Caucasian older adults. Clin. Nutr. 2015;34:667–673. doi: 10.1016/j.clnu.2014.07.010.
    1. Reiss J., Iglseder B., Kreutzer M., Weilbuchner I., Treschnitzer W., Kässmann H., Pirich C., Reiter R. Case finding for sarcopenia in geriatric inpatients: Performance of bioimpedance analysis in comparison to dual X-ray absorptiometry. BMC Geriatr. 2016;16:52. doi: 10.1186/s12877-016-0228-z.
    1. Gonzalez M.C., Heymsfield S.B. Bioelectrical impedance analysis for diagnosing sarcopenia and cachexia: What are we really estimating? J. Cachexia Sarcopenia Muscle. 2017;8:187–189. doi: 10.1002/jcsm.12159.
    1. Tamandl D., Paireder M., Asari R., Baltzer P.A.T., Schoppmann S.F., Ba-Ssalamah A. Markers of sarcopenia quantified by computed tomography predict adverse long-term outcome in patients with resected oesophageal or gastro-oesophageal junction cancer. Eur. Radiol. 2015;26:1359–1367. doi: 10.1007/s00330-015-3963-1.
    1. Shachar S.S., Williams G.R., Muss H.B., Funakoshi T. Prognostic value of sarcopenia in adults with solid tumours: A meta-analysis and systematic review. Eur. J. Cancer. 2016;57:58–67. doi: 10.1016/j.ejca.2015.12.030.
    1. Prado C.M., Lieffers J.R., McCargar L.J., Reiman T., Sawyer M.B., Martin L., Baracos V. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: A population-based study. Lancet Oncol. 2008;9:629–635. doi: 10.1016/S1470-2045(08)70153-0.
    1. Leitner J., Pelster S., Schöpf V., Berghoff A.S., Woitek R., Asenbaum U., Nenning K.-H., Widhalm G., Kiesel B., Gatterbauer B., et al. High correlation of temporal muscle thickness with lumbar skeletal muscle cross-sectional area in patients with brain metastases. PLoS ONE. 2018;13:e0207849. doi: 10.1371/journal.pone.0207849.
    1. Bullitt E., Zeng N., Gerig G., Aylward S., Joshi S., Smith J.K., Lin W., Ewend M.G. Vessel tortuosity and brain tumor malignancy: A blinded study. Acad. Radiol. 2005;12:1232–1240. doi: 10.1016/j.acra.2005.05.027.
    1. Nooner K.B., Colcombe S., Tobe R.H., Mennes M., Benedict M.M., Moreno A.L., Panek L.J., Brown S., Zavitz S.T., Li Q., et al. The NKI-rockland sample: A model for accelerating the pace of discovery science in psychiatry. Front. Behav. Neurosci. 2012;6:152. doi: 10.3389/fnins.2012.00152.
    1. Furtner J., Berghoff A.S., Albtoush O.M., Woitek R., Asenbaum U., Prayer D., Widhalm G., Gatterbauer B., Dieckmann K., Birner P., et al. Survival prediction using temporal muscle thickness measurements on cranial magnetic resonance images in patients with newly diagnosed brain metastases. Eur. Radiol. 2017;27:3167–3173. doi: 10.1007/s00330-016-4707-6.
    1. Nayak L., DeAngelis L.M., Brandes A.A., Peereboom D.M., Galanis E., Lin N.U., Soffietti R., Macdonald D.R., Chamberlain M., Perry J., et al. The Neurologic Assessment in Neuro-Oncology (NANO) scale: A tool to assess neurologic function for integration into the Response Assessment in Neuro-Oncology (RANO) criteria. Neuro-Oncol. 2017;19:625–635. doi: 10.1093/neuonc/nox029.
    1. Fried L.P., Tangen C.M., Walston J., Newman A.B., Hirsch C., Gottdiener J., Seeman T., Tracy R., Kop W.J., Burke G., et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2001;56:M146–M157. doi: 10.1093/gerona/56.3.M146.
    1. Coleman S.R., Grover R. The anatomy of the aging face: Volume loss and changes in 3-dimensional topography. Aesthet. Surg. J. 2006:26. doi: 10.1016/j.asj.2005.09.012.
    1. Janssen I., Heymsfield S.B., Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 2002;50:889–896. doi: 10.1046/j.1532-5415.2002.50216.x.
    1. Kumar A., Langstraat C., DeJong S.R., McGree M.E., Bakkum-Gamez J.N., Weaver A.L., Lebrasseur N., Cliby W.A. Functional not chronologic age: Frailty index predicts outcomes in advanced ovarian cancer. Gynecol. Oncol. 2017;147:104–109. doi: 10.1016/j.ygyno.2017.07.126.
    1. Mitnitski A.B., Graham J.E., Mogilner A.J., Rockwood K. Frailty, fitness and late-life mortality in relation to chronological and biological age. BMC Geriatr. 2002;2:1. doi: 10.1186/1471-2318-2-1.
    1. Cosway B., Easby M., Covington S., Bowe I., Paleri V. Hand-grip strength does not correlate with treatment-related weight loss in patients with head and neck cancer. J. Laryngol. Otol. 2015;129:706–709. doi: 10.1017/S0022215115001486.
    1. Lisiecki J., Zhang P., Wang L., Rinkinen J., De La Rosa S., Enchakalody B., Brownley R.C., Wang S.C., Buchman S.R., Levi B. Morphomic measurement of the temporalis muscle and zygomatic bone as novel predictors of hospital-based clinical outcomes in patients with mandible fracture. J. Craniofacial Surg. 2013;24:1577–1581. doi: 10.1097/SCS.0b013e3182a12e02.
    1. Katsuki M., Yamamoto Y., Uchiyama T., Wada N., Kakizawa Y. Clinical characteristics of aneurysmal subarachnoid hemorrhage in the elderly over 75; would temporal muscle be a potential prognostic factor as an indicator of sarcopenia? Clin. Neurol. Neurosurg. 2019;186:105535. doi: 10.1016/j.clineuro.2019.105535.
    1. Furtner J., Berghoff A.S., Schöpf V., Reumann R., Pascher B., Woitek R., Asenbaum U., Pelster S., Leitner J., Widhalm G., et al. Temporal muscle thickness is an independent prognostic marker in melanoma patients with newly diagnosed brain metastases. J. Neuro-Oncol. 2018;140:173–178. doi: 10.1007/s11060-018-2948-8.
    1. Furtner J., Genbrugge E., Gorlia T., Bendszus M., Nowosielski M., Golfinopoulos V., Weller M., Bent M.J.V.D., Wick W., Preusser M. Temporal muscle thickness is an independent prognostic marker in patients with progressive glioblastoma: Translational imaging analysis of the EORTC 26101 trial. Neuro-Oncol. 2019;21:1587–1594. doi: 10.1093/neuonc/noz131.
    1. Rinkinen J., Zhang P., Wang L., Enchakalody B., Terjimanian M., Holcomb S., Wang S.C., Buchman S.R., Levi B. Novel temporalis muscle and fat pad morphomic analyses aids preoperative risk evaluation and outcome assessment in nonsyndromic craniosynostosis. J. Craniofacial Surg. 2013;24:250–255. doi: 10.1097/SCS.0b013e31827006f5.
    1. Grünheid T., Langenbach G.E.J., Korfage J.A.M., Zentner A., Van Eijden T.M.G.J. The adaptive response of jaw muscles to varying functional demands. Eur. J. Orthod. 2009;31:596–612. doi: 10.1093/ejo/cjp093.

Source: PubMed

Подписаться