Real-time FMRI neurofeedback training of amygdala activity in patients with major depressive disorder

Kymberly D Young, Vadim Zotev, Raquel Phillips, Masaya Misaki, Han Yuan, Wayne C Drevets, Jerzy Bodurka, Kymberly D Young, Vadim Zotev, Raquel Phillips, Masaya Misaki, Han Yuan, Wayne C Drevets, Jerzy Bodurka

Abstract

Background: Amygdala hemodynamic responses to positive stimuli are attenuated in major depressive disorder (MDD), and normalize with remission. Real-time functional MRI neurofeedback (rtfMRI-nf) offers a non-invasive method to modulate this regional activity. We examined whether depressed participants can use rtfMRI-nf to enhance amygdala responses to positive autobiographical memories, and whether this ability alters symptom severity.

Methods: Unmedicated MDD subjects were assigned to receive rtfMRI-nf from either left amygdala (LA; experimental group, n = 14) or the horizontal segment of the intraparietal sulcus (HIPS; control group, n = 7) and instructed to contemplate happy autobiographical memories (AMs) to raise the level of a bar representing the hemodynamic signal from the target region to a target level. This 40s Happy condition alternated with 40s blocks of rest and counting backwards. A final Transfer run without neurofeedback information was included.

Results: Participants in the experimental group upregulated their amygdala responses during positive AM recall. Significant pre-post scan decreases in anxiety ratings and increases in happiness ratings were evident in the experimental versus control group. A whole brain analysis showed that during the transfer run, participants in the experimental group had increased activity compared to the control group in left superior temporal gyrus and temporal polar cortex, and right thalamus.

Conclusions: Using rtfMRI-nf from the left amygdala during recall of positive AMs, depressed subjects were able to self-regulate their amygdala response, resulting in improved mood. Results from this proof-of-concept study suggest that rtfMRI-nf training with positive AM recall holds potential as a novel therapeutic approach in the treatment of depression.

Conflict of interest statement

Competing Interests: The authors have read the journal's policy and have the following conflicts. Wayne Drevets, M.D., is an employee of Johnson & Johnson, Inc., and has consulted for Myriad/Rules Based Medicine and for Eisai, Inc. The other authors have declared that no competing interests exist. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1. Design of the rtfMRI neurofeedback…
Figure 1. Design of the rtfMRI neurofeedback experiment.
A) Regions of Interest (ROI) for the rtfMRI neurofeedback procedure. Three regions of interest (spheres of 7 mm radius) were used to assess changes in BOLD activity. These regions were the left amygdala (LA, red, centered at -21, -5, -16), right amygdala (RA, yellow, centered at 21, -5, -16), and left horizontal segment of the intraparietal sulcus (HIPS, green, centered at -42, -48, 48). ROI placements are illustrated on T1-weighted coronal (upper row) and axial (lower row) human brain sections in Talairach space. Following radiological notation, the left side (L) of the brain is shown on the right, and the right side (R) of the brain on the left. B) Real-time display screen for the rtfMRI neurofeedback procedure. During the Happy condition, the word “Happy,” two color bars, and a number indicating the neurofeedback signal were displayed on the screen. Participants were instructed to recall happy autobiographical memories to make themselves feel happy while trying to increase the level of the red bar representing the feedback signal from the target ROI to a given target level indicated by the fixed height of the blue bar (but not to exceed that target level). C) Protocol for the rtfMRI neurofeedback experiment. The experimental protocol consisted of seven runs each lasting 8 min 40 sec. During the Rest runs, participants were instructed to rest with their eyes open. During the Practice run, the participants were given the opportunity to become comfortable with the procedure and test out different memories. During Runs 1–3 participants underwent rtfMRI neurofeedback training consisting of alternating blocs of Rest (R, pink block), Happy (H, red block), and Count (C, green block, instructed to count backwards from 300 by a given integer), each lasting 40 sec. During the Transfer Run, participants were instructed to perform the same task as during the neurofeedback training, but no neurofeedback information (bars, numbers) was provided.
Figure 2. Percent BOLD Signal Change for…
Figure 2. Percent BOLD Signal Change for each ROI, run, and group.
Mean percent BOLD signal change for the Happy – Rest condition for each experimental run for the left amygdala (LA; panels A, B, C), right amygdala (RA; panels D, E, F), and horizontal segment of the intraparietal sulcus (HIPS; panels G, H, I) for the LA rtfMRI-nf group (panels A, D, G), HIPS rtfMRI-nf group (panels B, E, H), and for the difference between the LA and HIPS rtfMRI-nf groups (C, F, I). Error bars indicate +/− one standard error of the mean. * indicates a significant difference from 0 at p

Figure 3. Relationship between left amygdala neurofeedback…

Figure 3. Relationship between left amygdala neurofeedback training effect and individual characteristics in the experimental…

Figure 3. Relationship between left amygdala neurofeedback training effect and individual characteristics in the experimental rtfMRI-nf group.
A) Correlation with length of the current major depressive episode. The training effect for the left amygdala (the average Happy – Rest percent signal change over the three training runs) was inversely correlated with the length of participants' current depressive episode. B) Correlation with difficulty describing feelings (TAS-20). The more difficulty a participant had describing their own feelings, the less average BOLD activation for the Happy-Rest contrast was observed in the left amygdala for the three training runs.

Figure 4. Group differences in BOLD activity…

Figure 4. Group differences in BOLD activity during the Transfer Run.

Regions A) Left Superior…

Figure 4. Group differences in BOLD activity during the Transfer Run.
Regions A) Left Superior Temporal Gyrus B) Left Temporal Pole C) Right Thalamus and associated percent signal change graphs, are shown where groups had differential activation during Happy AM recall vs Rest during the Transfer run in which no neurofeedback was provided. Error bars indicate +/1 one standard deviation of the mean.
Figure 3. Relationship between left amygdala neurofeedback…
Figure 3. Relationship between left amygdala neurofeedback training effect and individual characteristics in the experimental rtfMRI-nf group.
A) Correlation with length of the current major depressive episode. The training effect for the left amygdala (the average Happy – Rest percent signal change over the three training runs) was inversely correlated with the length of participants' current depressive episode. B) Correlation with difficulty describing feelings (TAS-20). The more difficulty a participant had describing their own feelings, the less average BOLD activation for the Happy-Rest contrast was observed in the left amygdala for the three training runs.
Figure 4. Group differences in BOLD activity…
Figure 4. Group differences in BOLD activity during the Transfer Run.
Regions A) Left Superior Temporal Gyrus B) Left Temporal Pole C) Right Thalamus and associated percent signal change graphs, are shown where groups had differential activation during Happy AM recall vs Rest during the Transfer run in which no neurofeedback was provided. Error bars indicate +/1 one standard deviation of the mean.

References

    1. World Healh Organization (2004) The World Health Report 2004 - Changing History. Geneva.
    1. Cain RA (2007) Navigating the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study: practical outcomes and implications for depression treatment in primary care. Prim Care 34: 505–519.
    1. Merrill KA, Tolbert VE, Wade WA (2003) Effectiveness of cognitive therapy for depression in a community mental health center: a benchmarking study. J Consult Clin Psychol 71: 404–409.
    1. Elkin I, Gibbons RD, Shea MT, Sotsky SM, Watkins JT, et al. (1995) Initial severity and differential treatment outcome in the National Institute of Mental Health Treatment of Depression Collaborative Research Program. J Consult Clin Psychol 63: 841–847.
    1. Merkl A, Heuser I, Bajbouj M (2009) Antidepressant electroconvulsive therapy: mechanism of action, recent advances and limitations. Exp Neurol 219: 20–26.
    1. Mohr P, Rodriguez M, Slavickova A, Hanka J (2011) The application of vagus nerve stimulation and deep brain stimulation in depression. Neuropsychobiology 64: 170–181.
    1. Cox RW, Jesmanowicz A, Hyde JS (1995) Real-time functional magnetic resonance imaging. Magn Reson Med 33: 230–236.
    1. deCharms RC (2008) Applications of real-time fMRI. Nat Rev Neurosci 9: 720–729.
    1. deCharms RC, Christoff K, Glover GH, Pauly JM, Whitfield S, et al. (2004) Learned regulation of spatially localized brain activation using real-time fMRI. NeuroImage 21: 436–443.
    1. Weiskopf N, Sitaram R, Josephs O, Veit R, Scharnowski F, et al. (2007) Real-time functional magnetic resonance imaging: methods and applications. Magn Reson Imaging 25: 989–1003.
    1. Johnston SJ, Boehm SG, Healy D, Goebel R, Linden DE (2010) Neurofeedback: A promising tool for the self-regulation of emotion networks. NeuroImage 49: 1066–1072.
    1. Caria A, Veit R, Sitaram R, Lotze M, Weiskopf N, et al. (2007) Regulation of anterior insular cortex activity using real-time fMRI. NeuroImage 35: 1238–1246.
    1. Posse S, Fitzgerald D, Gao K, Habel U, Rosenberg D, et al. (2003) Real-time fMRI of temporolimbic regions detects amygdala activation during single-trial self-induced sadness. NeuroImage 18: 760–768.
    1. Zotev V, Krueger F, Phillips R, Alvarez RP, Simmons WK, et al. (2011) Self-regulation of amygdala activation using real-time FMRI neurofeedback. PLoS One 6: e24522.
    1. Hamilton JP, Glover GH, Hsu JJ, Johnson RF, Gotlib IH (2011) Modulation of subgenual anterior cingulate cortex activity with real-time neurofeedback. Hum Brain Mapp 32: 22–31.
    1. deCharms RC, Maeda F, Glover GH, Ludlow D, Pauly JM, et al. (2005) Control over brain activation and pain learned by using real-time functional MRI. Proc Natl Acad Sci USA 102: 18626–18631.
    1. Haller S, Birbaumer N, Veit R (2010) Real-time fMRI feedback training may improve chronic tinnitus. Eur Radiol 20: 696–703.
    1. Subramanian L, Hindle JV, Johnston S, Roberts MV, Husain M, et al. (2011) Real-time functional magnetic resonance imaging neurofeedback for treatment of Parkinson's disease. J Neurosci 31: 16309–16317.
    1. Linden DE, Habes I, Johnston SJ, Linden S, Tatineni R, et al. (2012) Real-time self-regulation of emotion networks in patients with depression. PLoS One 7: e38115.
    1. Victor TA, Furey ML, Fromm SJ, Ohman A, Drevets WC (2010) Relationship between amygdala responses to masked faces and mood state and treatment in major depressive disorder. Arch Gen Psychiatry 67: 1128–1138.
    1. Sergerie K, Chochol C, Armony JL (2008) The role of the amygdala in emotional processing: a quantitative meta-analysis of functional neuroimaging studies. Neurosci Biobehav Rev 32: 811–830.
    1. Everitt BJ, Cardinal RN, Parkinson JA, Robbins TW (2003) Appetitive behavior: impact of amygdala-dependent mechanisms of emotional learning. Ann N Y Acad Sci 985: 233–250.
    1. Baas D, Aleman A, Kahn RS (2004) Lateralization of amygdala activation: a systematic review of functional neuroimaging studies. Brain Res Brain Res Rev 45: 96–103.
    1. Sheline YI, Barch DM, Donnelly JM, Ollinger JM, Snyder AZ, et al. (2001) Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol Psychiatry 50: 651–658.
    1. Drevets W, Price J, Bardgett M, Reich T, Todd R, et al. (2002) Glucose metabolism in the amygdala in depression: relationship to diagnostic subtype and plasma cortisol levels. Pharmacol Biochem Behav 71: 431–448.
    1. Drevets WC (2003) Neuroimaging abnormalities in the amygdala in mood disorders. Ann N Y Acad Sci 985: 420–444.
    1. Suslow T, Konrad C, Kugel H, Rumstadt D, Zwitserlood P, et al. (2010) Automatic mood-congruent amygdala responses to masked facial expressions in major depression. Biol Psychiatry 67: 155–160.
    1. Siegle GJ, Ghinassi F, Thase ME (2007) Neurobehavioral Therapies in the 21st Century: Summary of an Emerging Field and an Extended Example of Cognitive Control Training for Depression. Cognit Ther Res 31: 235–262.
    1. Harmer CJ, O'Sullivan U, Favaron E, Massey-Chase R, Ayres R, et al. (2009) Effect of acute antidepressant administration on negative affective bias in depressed patients. Am J Psychiatry 166: 1178–1184.
    1. American Psychological Association (APA) (2000) Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision. Washington, DC: American Psychiatric Association.
    1. First MB, Spitzer RL, Gibbon M, Williams JBW (2002) Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition (SCID-I/P). New York, NY: New York State Psychiatric Institute, Biometrics Research.
    1. Greenberg D, Rice H, Cooper J, Cabeza R, Rubin D, et al. (2005) Co-activation of the amygdala, hippocampus and inferior frontal gyrus during autobiographical memory retrieval. Neuropsychologia 43: 659–674.
    1. Johnston S, Linden DE, Healy D, Goebel R, Habes I, et al. (2011) Upregulation of emotion areas through neurofeedback with a focus on positive mood. Cogn Affect Behav Neurosci 11: 44–51.
    1. van Vreeswijk M, de Wilde E (2004) Autobiographical memory specificity, psychopathology, depressed mood and the use of the Autobiographical Memory Test: A meta-analysis. Behav Res Ther 42: 731–743.
    1. Young K, Erickson K, Nugent AC, Fromm SJ, Mallinger AG, et al. (2012) Functional anatomy of autobiographical memory recall deficits in depression. Psychol Med 42: 345–357.
    1. Damasio AR, Grabowski TJ, Bechara A, Damasio H, Ponto LL, et al. (2000) Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci 3: 1049–1056.
    1. Siegle G, Steinhauer S, Thase M, Stenger V, Carter C (2002) Can't shake that feeling: event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals. Biol Psychiatry 51: 693–707.
    1. Bagby RM, Taylor GJ, Parker JD (1994) The Twenty-item Toronto Alexithymia Scale—II. Convergent, discriminant, and concurrent validity. J Psychsom Res 38: 33–40.
    1. Doherty R (1997) The emotional contagion scale: a measure of individual differences. J Nonverb Behav 21: 131–154.
    1. Snaith RP, Hamilton M, Morley S, Humayan A, Hargreaves D, et al. (1995) A scale for the assessment of hedonic tone the Snaith-Hamilton Pleasure Scale. Br J Psychiatry 167: 99–103.
    1. Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23: 56–62.
    1. Montgomery SA, Asberg M (1979) A new depression scale designed to be sensitive to change. Br J Psychiatry 134: 382–389.
    1. Hamilton M (1959) The assessment of anxiety states by rating. Br J Med Psychol 32: 50–55.
    1. McNair D, Lorr M, Dropplemen L (1971) Edits manual: Profile of mood states. San Diego: Educational and Industrial Testing Services.
    1. Spielberger CD, Gorsuch RL, RE L (1970) Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press.
    1. Phillips R, Young K, Zotev V, Drevets W, Bodurka J (2012) Self-regulation of Amygdala Activation with Real-Time fMRI Neurofeedback in MDD Patients; Beijing, China.
    1. Young K, Phillips R, Zotev V, Drevets W, Bodurka J (2012) Self-Regulation of Amygdala Activity with Real-Time fMRI Neurofeedback in Patients with Depression 2012; Ft. Lauderdale, FL.
    1. Talairach J, Tournoux P (1988) Co-planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System - an Approach to Cerebral Imaging. New York: Thieme Medical Publishers.
    1. Fias W, Lammertyn J, Caessens B, Orban GA (2007) Processing of abstract ordinal knowledge in the horizontal segment of the intraparietal sulcus. J Neurosci 27: 8952–8956.
    1. Dehaene S, Piazza M, Pinel P, Cohen L (2003) Three parietal circuits for number processing. Cogn Neuropsychol 20: 487–506.
    1. Newman SD, Willoughby G, Pruce B (2011) The effect of problem structure on problem-solving: an fMRI study of word versus number problems. Brain Res 1410: 77–88.
    1. Ruiz S, Lee S, Soekadar SR, Caria A, Veit R, et al. (2011) Acquired self-control of insula cortex modulates emotion recognition and brain network connectivity in schizophrenia. Hum Brain Mapp 34: 200–212.
    1. Cannon R, Lubar J, Congedo M, Thornton K, Towler K, et al. (2007) The effects of neurofeedback training in the cognitive division of the anterior cingulate gyrus. Int J Neurosci 117: 337–357.
    1. Molko N, Cachia A, Riviere D, Mangin JF, Bruandet M, et al. (2003) Functional and structural alterations of the intraparietal sulcus in a developmental dyscalculia of genetic origin. Neuron 40: 847–858.
    1. Bodurka J, Bandettini P (2008) Real-time software for monitoring MRI scanner operation. Neuroimage 41: S85.
    1. Cox RW, Jesmanowicz A (1999) Real-time 3D image registration for functional MRI. Magn Reson Med 42: 1014–1018.
    1. Glover GH, Li TQ, Ress D (2000) Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44: 162–167.
    1. Pinel P, Piazza M, Le Bihan D, Dehaene S (2004) Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron 41: 983–993.
    1. Culham JC, Kanwisher NG (2001) Neuroimaging of cognitive functions in human parietal cortex. Curr Opin Neurobiol 11: 157–163.
    1. Sakai K, Ramnani N, Passingham RE (2002) Learning of sequences of finger movements and timing: frontal lobe and action-oriented representation. J Neurophysiol 88: 2035–2046.
    1. Drevets WC (2001) Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol 11: 240–249.
    1. Aggleton JP (1985) A description of intra-amygdaloid connections in old world monkeys. Exp Brain Res 57: 390–399.
    1. Sah P, Faber ES, Lopez De Armentia M, Power J (2003) The amygdaloid complex: anatomy and physiology. Physiol Rev 83: 803–834.
    1. Dichter GS (2010) Anhedonia in Unipolar Major Depressive Disorder: A Review. Open Psychiatr J 4: 1–9.
    1. McMakin DL, Santiago CD, Shirk SR (2009) The Time Course of Positive and Negative Emotion in Dysphoria. J Posit Psychol 4: 182–192.
    1. Heller AS, Johnstone T, Shackman AJ, Light SN, Peterson MJ, et al. (2009) Reduced capacity to sustain positive emotion in major depression reflects diminished maintenance of fronto-striatal brain activation. Proc Natl Acad Sci U S A 106: 22445–22450.
    1. Sulzer J, Haller S, Scharnowski F, Weiskopf N, Birbaumer N, et al. (2013) Real-time fMRI neurofeedback: progress and challenges. Neuroimage 76: 386–399.
    1. Bradley B, Mathews A (1983) Negative self-schemata in clinical depression. Br J Clin Psychol 22 (Pt3): 173–181.
    1. Kelsey JE (2004) Achieving remission in major depressive disorder: the first step to long-term recovery. J Am Osteopath Assoc 104: S6–10.
    1. Loas G, Otmani O, Verrier A, Fremaux D, Marchand MP (1996) Factor analysis of the French version of the 20-Item Toronto Alexithymia Scale (TAS-20). Psychopathology 29: 139–144.
    1. Siegle GJ, Carter CS, Thase ME (2006) Use of FMRI to predict recovery from unipolar depression with cognitive behavior therapy. Am J Psychiatry 163: 735–738.
    1. Beutler LE, Engle D, Mohr D, Daldrup RJ, Bergan J, et al. (1991) Predictors of differential response to cognitive, experiential, and self-directed psychotherapeutic procedures. J Consult Clin Psychol 59: 333–340.
    1. Kim MJ, Loucks RA, Palmer AL, Brown AC, Solomon KM, et al. (2011) The structural and functional connectivity of the amygdala: from normal emotion to pathological anxiety. Behav Brain Res 223: 403–410.
    1. Svoboda E, McKinnon M, Levine B (2006) The functional neuroanatomy of autobiographical memory: a meta-analysis. Neuropsychologia 44: 2189–2208.
    1. Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4: 215–222.
    1. Zotev V, Phillips R, Young KD, Drevets WC, Bodurka J (2013) Prefrontal Control of the Amygdala during Real-Time fMRI Neurofeedback Training of Emotion Regulation. PLoS One 8: e79184.
    1. Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci13: 25–42.
    1. Anders S, Lotze M, Erb M, Grodd W, Birbaumer N (2004) Brain activity underlying emotional valence and arousal: a response-related fMRI study. Hum Brain Mapp 23: 200–209.
    1. Allison T, Puce A, McCarthy G (2000) Social perception from visual cues: role of the STS region. Trends Cogn Sci 4: 267–278.
    1. Gallagher HL, Frith CD (2003) Functional imaging of ‘theory of mind’. Trends Cogn Sci 7: 77–83.
    1. Olson IR, Plotzker A, Ezzyat Y (2007) The Enigmatic temporal pole: a review of findings on social and emotional processing. Brain 130: 1718–1731.
    1. Canli T, Sivers H, Thomason ME, Whitfield-Gabrieli S, Gabrieli JD, et al. (2004) Brain activation to emotional words in depressed vs healthy subjects. Neuroreport 15: 2585–2588.
    1. Fitzgerald PB, Laird AR, Maller J, Daskalakis ZJ (2008) A meta-analytic study of changes in brain activation in depression. Hum Brain Mapp 29: 683–695.
    1. Drevets W, Price J, Furey M (2008) Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 213: 93–118.

Source: PubMed

Подписаться