Oncogenic Alterations in Histologically Negative Lymph Nodes Are Associated with Prognosis of Patients with Stage I Lung Adenocarcinoma

Yiping Tian, Qian Lai, Yuansi Zheng, Lisha Ying, Canming Wang, Jiaoyue Jin, Minran Huang, Yingxue Wu, Huizhang Li, Jianjun Zhang, Dan Su, Yiping Tian, Qian Lai, Yuansi Zheng, Lisha Ying, Canming Wang, Jiaoyue Jin, Minran Huang, Yingxue Wu, Huizhang Li, Jianjun Zhang, Dan Su

Abstract

Background: Survival of patients with stage I non-small cell lung cancer (NSCLC) varies greatly. We sought to explore whether presence of oncogenic alterations in histologically-negative lymph nodes (LNs) can be of prognostic significance in stage I lung adenocarcinoma (LUAD). Methods: Genomic analysis of oncogenic alterations was applied to 123 stage I LUAD tumors. The same genomic variants identified in primary tumors were examined in corresponding histologically-negative LNs. Results: A total of 102 (82.9%) patients had at least one canonical oncogenic alteration detected in primary tumors, and 57 LNs from 12 patients (11.8%) were found to carry the identical oncogenic alterations detected in the corresponding primary tumor tissues, including EGFR mutations (six cases), KRAS mutations (three cases), ALK fusion (one case), BRAF mutation (one case) and HER2 & NRAS co-mutations (one case). None of these LNs was found to have occult tumor cells by routine pathological assessment or immunohistochemistry staining using antibodies against pan-cytokeratins (AE1/AE3) and the epithelial marker Ber-EP4. The detection rate of oncogenenic alterations in LN was significantly higher in RAS-mutant tumors than EGFR mutant tumors (36.36% verse 7.41%, p = 0.017). Patients with oncogenic alterations in LN showed inferior disease-free survival (DFS, p = 0.025) and overall survival (OS, p = 0.027). Furthermore, patients with RAS-mutations detected in LN had the worst DFS and OS (p = 0.001). Among the 11 patients with RAS mutation in primary tumors, DFS and OS in the four patients with mutations detected in LN were significantly shorter than the remaining seven patients without mutations LN (DFS, p = 0.001, OS, p = 0.002). Conclusions: Genomic analysis has the potential to detect oncogenic alterations in regional LNs for localized LUAD and presence of oncogenic alterations in regional LN may be associated with inferior clinical outcome of stage I LUAD, particularly for certain molecular subgroups. ClinicalTrials.gov ID NCT04266691.

Keywords: genomic analysis; lymph node; oncogenic alteration; prognosis; stage I lung adenocarcinoma.

Conflict of interest statement

The molecular detection kit used in this study was sponsored by Amoy Diagnostics Co., Ltd. (AmoyDx). J.Z. is a consultant for Geneplus-Beijing Institute, AstraZeneca and receives research funding and personal fees from Merck, Johnson and Johnson, Roche, OrigiMed, Innovent and Bristol-Myers Squibb outside of the submitted work.

Figures

Figure 1
Figure 1
Study scheme. A total of 140 patients were initially quired and 17 patients were excluded because of receiving neoadjuvant chemotherapy (n = 8), R1 resection (n = 3), inadequate tumor specimens (n = 4) or identification of LN metastasis at the time of FFPE block sectioning. Finally, the remaining 123 eligible patients were subjected to subsequent analyses.
Figure 2
Figure 2
Disease-free survival (A) and overall survival (B) of patients with LN molecular alterations of different oncogenic mutations. Different colors represent those molecular alterations in different LN stations. Arrows indicate that patients had no recurrence or death.
Figure 3
Figure 3
Survival of 102 histologically stage I LUAD with or without molecular alterations in LN. Comparison of DFS (A) and OS (B) between patients with molecular alterations in LN (LNMT, green line) versus those without molecular alterations in LN (LNNegative, blue line). Comparison of DFS (C) and OS (D) of patients carrying EGFR molecular alterations in LN (LNEGFRMT, green line), RAS molecular alterations in LN (LNRASMT, yellow line), other molecular alterations in LN (LNOtherMT purple line) and patients without molecular alterations in LN (LNNegative, blue line). Comparison of DFS (E) and OS (F) of EGFR-mutant patients with molecular alterations in LN (LungEGFRMTLNEGFRMT, green line), EGFR-mutant patients without molecular alterations in LN (LungEGFRMTLN Negative, blue line), RAS-mutant patients with molecular alterations in LN (LungRASMTLNRASMT, purple line), and RAS-mutant patients without molecular alterations in LN (LungRASMTLN Negative, yellow line). p was determined with the log-rank test.

References

    1. Benlloch S., Galbis-Caravajal J.M., Alenda C., Peiro F.M., Sanchez-Ronco M., Rodriguez-Paniagua J.M., Baschwitz B., Rojas E., Massuti B. Expression of molecular markers in mediastinal nodes from resected stage I non-small-cell lung cancer (NSCLC): Prognostic impact and potential role as markers of occult micrometastases. Ann. Oncol. 2009;20:91–97. doi: 10.1093/annonc/mdn538.
    1. Howington J.A., Blum M.G., Chang A.C., Balekian A.A., Murthy S.C. Treatment of Stage I and II Non-Small Cell Lung Cancer: Diagnosis and Management of Lung Cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143:e278S–e313S. doi: 10.1378/chest.12-2359.
    1. Martin L.W., D–Cunha J., Wang X., Herzan D., Gu L., Abraham N., Demmy T.L., Detterbeck F.C., Groth S.S., Harpole D.H., et al. Detection of Occult Micrometastases in Patients with Clinical Stage I Non-Small-Cell Lung Cancer: A Prospective Analysis of Mature Results of CALGB 9761 (Alliance) J. Clin. Oncol. 2016;34:1484–1491. doi: 10.1200/JCO.2015.63.4543.
    1. Erhunmwunsee L., D–Amico T.A. Detection of occult N2 disease with molecular techniques. Thorac Surg Clin. 2008;18:339–347. doi: 10.1016/j.thorsurg.2008.07.001.
    1. Kubuschok B., Passlick B., Izbicki J.R., Thetter O., Pantel K. Disseminated tumor cells in lymph nodes as a determinant for survival in surgically resected non-small-cell lung cancer. J. Clin. Oncol. 1999;17:19–24. doi: 10.1200/JCO.1999.17.1.19.
    1. Gu C.D., Osaki T., Oyama T., Inoue M., Kodate M., Dobashi K., Oka T., Yasumoto K. Detection of micrometastatic tumor cells in pN0 lymph nodes of patients with completely resected nonsmall cell lung cancer: Impact on recurrence and Survival. Ann. Surg. 2002;235:133–139. doi: 10.1097/00000658-200201000-00017.
    1. Ohgami A., Mitsudomi T., Sugio K., Tsuda T., Oyama T., Nishida K., Osaki T., Yasumoto K. Micrometastatic tumor cells in the bone marrow of patients with non-small cell lung cancer. Annals Thorac. Surg. 1997;64:363–367. doi: 10.1016/S0003-4975(97)00543-2.
    1. Saintigny P., Coulon S., Kambouchner M., Ricci S., Martinot E., Danel C., Breau J.L., Bernaudin J.F. Real-time RT-PCR detection of CK19, CK7 and MUC1 mRNA for diagnosis of lymph node micrometastases in non small cell lung carcinoma. Int. J. Cancer. 2005;115:777–782. doi: 10.1002/ijc.20942.
    1. Dobashi K., Sugio K., Osaki T., Oka T., Yasumoto K. Micrometastatic P53-positive cells in the lymph nodes of non-small-cell lung cancer: Prognostic significance. J. Thorac. Cardiovasc. Surg. 1997;114:339–346. doi: 10.1016/S0022-5223(97)70178-8.
    1. Nicholson A.G., Graham A.N., Pezzella F., Agneta G., Goldstraw P., Pastorino U. Does the use of immunohistochemistry to identify micrometastases provide useful information in the staging of node-negative non-small cell lung carcinomas? Lung Cancer. 1997;18:231–240. doi: 10.1016/S0169-5002(97)00065-2.
    1. Recondo G., Facchinetti F., Olaussen K.A., Besse B., Friboulet L. Making the first move in EGFR-driven or ALK-driven NSCLC: First-generation or next-generation TKI? Nat. Rev. Clin. Oncol. 2018;15:694–708. doi: 10.1038/s41571-018-0081-4.
    1. Detterbeck F.C., Boffa D.J., Kim A.W., Tanoue L.T. The Eighth Edition Lung Cancer Stage Classification. Chest. 2017;151:193–203. doi: 10.1016/j.chest.2016.10.010.
    1. Bruno R., Giordano M., Giannini R., Ali G., Puppo G., Ribechini A., Chella A., Fontanini G. Aberrant expression of anaplastic lymphoma kinase in lung adenocarcinoma: Analysis of circulating free tumor RNA using one-step reverse transcription-polymerase chain reaction. Mol. Med. Rep. 2016;14:2238–2242. doi: 10.3892/mmr.2016.5479.
    1. Xu H., Baidoo A.A.H., Su S., Ye J., Chen C., Xie Y., Bertolaccini L., Ismail M., Ricciuti B., Ng C.S.H., et al. A comparison of EGFR mutation status in tissue and plasma cell-free DNA detected by ADx-ARMS in advanced lung adenocarcinoma patients. Transl. Lung Cancer Res. 2019;8:135–143. doi: 10.21037/tlcr.2019.03.10.
    1. Shaozhang Z., Ming Z., Haiyan P., Aiping Z., Qitao Y., Xiangqun S. Comparison of ARMS and direct sequencing for detection of EGFR mutation and prediction of EGFR-TKI efficacy between surgery and biopsy tumor tissues in NSCLC patients. Med. Oncol. 2014;31:926. doi: 10.1007/s12032-014-0926-3.
    1. Herpel E., Muley T., Schneider T., Palm E., Kieslich de Hol D., Warth A., Meister M., Storz K., Schnabel P.A., Schirmacher P., et al. A pragmatic approach to the diagnosis of nodal micrometastases in early stage non-small cell lung cancer. J. Thorac. Oncol. 2010;5:1206–1212. doi: 10.1097/JTO.0b013e3181e15cfd.
    1. Tian Y., Sun X., Cheng G., Ji E., Yang S., Feng J., Zheng L. The association of CMTM6 expression with prognosis and PD-L1 expression in triple-negative breast cancer. Ann. Transl. Med. 2021;9:131. doi: 10.21037/atm-20-7616.
    1. Detterbeck F.C. Pushing forward into the darkness, leaping, and landing securely: Prognostication and adjuvant chemotherapy for lung cancer. Chest. 2011;140:1398–1400. doi: 10.1378/chest.11-1988.
    1. Zhang Y., Sun Y., Xiang J., Zhang Y., Hu H., Chen H. A clinicopathologic prediction model for postoperative recurrence in stage Ia non-small cell lung cancer. J. Thorac. Cardiovasc. Surg. 2014;148:1193–1199. doi: 10.1016/j.jtcvs.2014.02.064.
    1. Ou S.H., Zell J.A., Ziogas A., Anton-Culver H. Prognostic factors for survival of stage I nonsmall cell lung cancer patients: A population-based analysis of 19,702 stage I patients in the California Cancer Registry from 1989 to 2003. Cancer. 2007;110:1532–1541. doi: 10.1002/cncr.22938.
    1. Shimada Y., Saji H., Yoshida K., Kakihana M., Honda H., Nomura M., Usuda J., Kajiwara N., Ohira T., Ikeda N. Prognostic factors and the significance of treatment after recurrence in completely resected stage I non-small cell lung cancer. Chest. 2013;143:1626–1634. doi: 10.1378/chest.12-1717.
    1. Qiu C., Dong W., Su B., Liu Q., Du J. The prognostic value of ratio-based lymph node staging in resected non-small-cell lung cancer. J. Thorac. Oncol. 2013;8:429–435. doi: 10.1097/JTO.0b013e3182829c16.
    1. Yang J., Peng A., Wang B., Gusdon A.M., Sun X., Jiang G., Zhang P. The prognostic impact of lymph node metastasis in patients with non-small cell lung cancer and distant organ metastasis. Clin. Exp. Metastasis. 2019;36:457–466. doi: 10.1007/s10585-019-09985-y.
    1. Lobo A.Z., Tanabe K.K., Luo S., Muzikansky A., Sober A.J., Tsao H., Cosimi A.B., Duncan L.M. The distribution of microscopic melanoma metastases in sentinel lymph nodes: Implications for pathology protocols. Am. J. Surg Pathol. 2012;36:1841–1848. doi: 10.1097/PAS.0b013e31826d25f9.
    1. Lee W.C., Diao L., Wang J., Zhang J., Roarty E.B., Varghese S., Chow C.W., Fujimoto J., Behrens C., Cascone T., et al. Multiregion gene expression profiling reveals heterogeneity in molecular subtypes and immunotherapy response signatures in lung cancer. Mod. Pathol. 2018;31:947–955. doi: 10.1038/s41379-018-0029-3.
    1. Herbst R.S., Soria J.C., Kowanetz M., Fine G.D., Hamid O., Gordon M.S., Sosman J.A., McDermott D.F., Powderly J.D., Gettinger S.N., et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563–567. doi: 10.1038/nature14011.
    1. Mansfield A.S., Aubry M.C., Moser J.C., Harrington S.M., Dronca R.S., Park S.S., Dong H. Temporal and spatial discordance of programmed cell death-ligand 1 expression and lymphocyte tumor infiltration between paired primary lesions and brain metastases in lung cancer. Ann. Oncol. 2016;27:1953–1958. doi: 10.1093/annonc/mdw289.
    1. Aramaki N., Ishii G., Yamada E., Morise M., Aokage K., Kojima M., Hishida T., Yoshida J., Ikeda N., Tsuboi M., et al. Drastic morphological and molecular differences between lymph node micrometastatic tumors and macrometastatic tumors of lung adenocarcinoma. J. Cancer Res. Clin. Oncol. 2016;142:37–46. doi: 10.1007/s00432-015-1996-0.
    1. Zhang J., Fujimoto J., Zhang J., Wedge D.C., Song X., Zhang J., Seth S., Chow C.W., Cao Y., Gumbs C., et al. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science. 2014;346:256–259. doi: 10.1126/science.1256930.
    1. Liu Y., Zhang J., Li L., Yin G., Zhang J., Zheng S., Cheung H., Wu N., Lu N., Mao X., et al. Genomic heterogeneity of multiple synchronous lung cancer. Nat. Commun. 2016;7:13200. doi: 10.1038/ncomms13200.
    1. Liu Z., Liang H., Lin J., Cai X., Pan Z., Liu J., Xie X., Li C., Cheng B., Zhao Y., et al. The incidence of lymph node metastasis in patients with different oncogenic driver mutations among T1 non-small-cell lung cancer. Lung Cancer. 2019;134:218–224. doi: 10.1016/j.lungcan.2019.06.026.
    1. Nagasaka M., Gadgeel S.M. Role of chemotherapy and targeted therapy in early-stage non-small cell lung cancer. Expert Rev. Anticancer Ther. 2018;18:63–70. doi: 10.1080/14737140.2018.1409624.
    1. Kris M.G., Gaspar L.E., Chaft J.E., Kennedy E.B., Azzoli C.G., Ellis P.M., Lin S.H., Pass H.I., Seth R., Shepherd F.A., et al. Adjuvant Systemic Therapy and Adjuvant Radiation Therapy for Stage I to IIIA Completely Resected Non-Small-Cell Lung Cancers: American Society of Clinical Oncology/Cancer Care Ontario Clinical Practice Guideline Update. J. Clin. Oncol. 2017;35:2960–2974. doi: 10.1200/JCO.2017.72.4401.
    1. Osmani L., Askin F., Gabrielson E., Li Q.K. Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (NSCLC): Moving from targeted therapy to immunotherapy. Semin Cancer Biol. 2018;52:103–109. doi: 10.1016/j.semcancer.2017.11.019.
    1. Vansteenkiste J., Wauters E., Reymen B., Ackermann C.J., Peters S., De Ruysscher D. Current status of immune checkpoint inhibition in early-stage NSCLC. Ann. Oncol. 2019;30:1244–1253. doi: 10.1093/annonc/mdz175.
    1. Giuliano A.E., Connolly J.L., Edge S.B., Mittendorf E.A., Rugo H.S., Solin L.J., Weaver D.L., Winchester D.J., Hortobagyi G.N. Breast Cancer-Major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J. Clin. 2017;67:290–303. doi: 10.3322/caac.21393.
    1. Reed J., Rosman M., Verbanac K.M., Mannie A., Cheng Z., Tafra L. Prognostic implications of isolated tumor cells and micrometastases in sentinel nodes of patients with invasive breast cancer: 10-year analysis of patients enrolled in the prospective East Carolina University/Anne Arundel Medical Center Sentinel Node Multicenter Study. J. Am. Coll Surg. 2009;208:333–340. doi: 10.1016/j.jamcollsurg.2008.10.036.
    1. Giuliano A.E., Hawes D., Ballman K.V., Whitworth P.W., Blumencranz P.W., Reintgen D.S., Morrow M., Leitch A.M., Hunt K.K., McCall L.M., et al. Association of occult metastases in sentinel lymph nodes and bone marrow with survival among women with early-stage invasive breast cancer. JAMA. 2011;306:385–393. doi: 10.1001/jama.2011.1034.
    1. Abbosh C., Birkbak N.J., Wilson G.A., Jamal-Hanjani M., Constantin T., Salari R., Le Quesne J., Moore D.A., Veeriah S., Rosenthal R., et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 2017;545:446–451. doi: 10.1038/nature22364.
    1. Poulet G., Massias J., Taly V. Liquid Biopsy: General Concepts. Acta Cytol. 2019;63:449–455. doi: 10.1159/000499337.
    1. Li Y.S., Jiang B.Y., Yang J.J., Zhang X.C., Zhang Z., Ye J.Y., Zhong W.Z., Tu H.Y., Chen H.J., Wang Z., et al. Unique genetic profiles from cerebrospinal fluid cell-free DNA in leptomeningeal metastases of EGFR-mutant non-small-cell lung cancer: A new medium of liquid biopsy. Ann. Oncol. 2018;29:945–952. doi: 10.1093/annonc/mdy009.
    1. Cassetta L., Pollard J.W. Targeting macrophages: Therapeutic approaches in cancer. Nat. Rev. Drug Discov. 2018;17:887–904. doi: 10.1038/nrd.2018.169.
    1. Noy R., Pollard J.W. Tumor-associated macrophages: From mechanisms to therapy. Immunity. 2014;41:49–61. doi: 10.1016/j.immuni.2014.06.010.

Source: PubMed

Подписаться