Agavins Increase Neurotrophic Factors and Decrease Oxidative Stress in the Brains of High-Fat Diet-Induced Obese Mice

Elena Franco-Robles, Mercedes G López, Elena Franco-Robles, Mercedes G López

Abstract

Background: Fructans obtained from agave, called agavins, have recently shown significant benefits for human health including obesity. Therefore, we evaluated the potential of agavins as neuroprotectors and antioxidants by determining their effect on brain-derived neurotrophic factor (BDNF) and glial-derived neurotrophic factor (GDNF) as well as oxidative brain damage in of obese mice.

Methods: Male C57BL/6J mice were fed a high-fat diet (HFD) and treated daily with 5% (HFD/A5) or 10% (HFD/A10) of agavins or a standard diet (SD) for 10 weeks. The levels of BDNF and GDNF were evaluated by ELISA. The oxidative stress was evaluated by lipid peroxidation (TBARS) and carbonyls. SCFAs were also measured with GC-FID. Differences between groups were assessed using ANOVA and by Tukey's test considering p < 0.05.

Results: The body weight gain and food intake of mice HFD/A10 group were significantly lower than those in the HFD group. Agavins restored BDNF levels in HFD/A5 group and GDNF levels of HFD/A5 and HFD/A10 groups in cerebellum. Interestingly, agavins decreased TBARS levels in HFD/A5 and HFD/A10 groups in the hippocampus, frontal cortex and cerebellum. Carbonyl levels were also lower in HFD/A5 and HFD/A10 for only the hippocampus and cerebellum. It was also found that agavins enhanced SCFAs production in feces.

Conclusion: Agavins may act as bioactive ingredients with antioxidant and protective roles in the brain.

Keywords: agavins; brain; high-fat diet; lipids; oxidative stress.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Body weights in mice fed with standard diet (SD, ⧫); high fat diet (HFD, ∎); high fat diet with agave fructans 5% (HFD/A5, ∆); high fat diet with agave fructans 10% (HFD/A10, ●). One-way ANOVA with repeated measures and Tukey contrasts were performed to compare differences among groups. The data are represented as the mean with their standard errors of the mean (SEM). N = 10. Mean values with unlike letters (a,b) were significantly different (p < 0.05).
Figure 2
Figure 2
Total fecal mice SCFAs levels at (A) 2 weeks, (B) 4 weeks, (C) 8 weeks and (D) 10 weeks. SD, standard diet; HFD, high-fat diet; HFD/A5, high-fat diet supplemented with 5% agavins; HFD/A10, high-fat diet supplemented with 10% agavins. One-way ANOVA and Tukey contrasts were performed to establish differences among groups. The data are represented as the mean with their standard errors of the mean (SEM). N = 10. Mean values with unlike letters (a,b,c) were significantly different (p < 0.05).
Figure 3
Figure 3
Effects of fructans on brain-derived neurotrophic factor (BDNF) levels in the hippocampus, frontal cortex and cerebellum of mice fed with standard diet (SD); high-fat diet (HFD); high-fat diet with agave fructans 5% (HFD/A5); high-fat diet with agave fructans 10% (HFD/A10). One-way ANOVA and Tukey contrasts were performed to compare differences among groups. The data are represented as the mean with their standard errors of the mean (SEM). N = 10. Mean values with unlike letters (a,b) were significantly different (p < 0.05).
Figure 4
Figure 4
Effects of fructans on glial-derived neurotrophic factor (GDNF) levels in the hippocampus, frontal cortex and cerebellum of mice fed with standard diet (SD); high-fat diet (HFD); high-fat diet with agave fructans 5% (HFD/A5); high-fat diet with agave fructans 10% (HFD/A10). One-way ANOVA and Tukey contrasts were performed to compare differences among groups. The data are represented as the mean with their standard errors of the mean (SEM). N = 10. Mean values with unlike letters (a,b) were significantly different (p < 0.05).
Figure 5
Figure 5
Effects of fructans on TBARS levels in the hippocampus, frontal cortex and cerebellum of mice fed with standard diet (SD); high-fat diet (HFD); high-fat diet with agave fructans 5% (HFD/A5); high-fat diet with agave fructans 10% (HFD/A10). One-way ANOVA and Tukey contrasts were performed to compare differences among groups. The data are represented as the mean with their standard errors of the mean (SEM). N = 10. Mean values with unlike letters (a,b) were significantly different (p < 0.05).
Figure 6
Figure 6
Effects of fructans on protein carbonyls levels in the hippocampus, frontal cortex and cerebellum of mice fed with standard diet (SD); high-fat diet (HFD); high-fat diet with agave fructans 5% (HFD/A5); high-fat diet with agave fructans 10% (HFD/A10). One-way ANOVA and Tukey contrasts were performed to compare differences among groups. The data are represented as the mean with their standard errors of the mean (SEM). N = 10. Mean values with unlike letters (a,b) were significantly different (p < 0.05).

References

    1. Malik V.S., Willett W.C., Hu F.B. Global obesity: Trends, risk factors and policy implications. Nat. Rev. Endocrinol. 2013;9:13–27. doi: 10.1038/nrendo.2012.199.
    1. Hill J.O., Wyatt H.R., Peters J.C. Energy balance and obesity. Circulation. 2012;126:126–132. doi: 10.1161/CIRCULATIONAHA.111.087213.
    1. López M.G., Mancilla-Margalli N.A., Mendoza-Díaz G. Molecular structures of fructans from Agave tequilana Weber var. Azul. J. Agric. Food Chem. 2003;51:7835–7840. doi: 10.1021/jf030383v.
    1. Mancilla-Margalli N.A., López M.G. Water-soluble carbohydrates and fructan structure patterns from Agave and Dasylirion species. J. Agric. Food Chem. 2006;54:7832–7839. doi: 10.1021/jf060354v.
    1. Marquez-Aguirre A.L., Camacho-Ruiz R.M., Arriaga-Alba M., Padilla-Camberos E., Kirchmayr M.R., Blasco J.L., Gonzalez-Avila M. Effects of Agave tequilana fructans with different degree of polymerization profiles on the body weight, blood lipids and count of fecal Lactobacilli/Bifidobacteria in obese mice. Food Funct. 2013;4:1237–1244. doi: 10.1039/c3fo60083a.
    1. Huazano-García A., López M.G. Agavins reverse the metabolic disorders in overweigth mice through the increment of short chain fatty acids and hormones. Food Funct. 2015 doi: 10.1039/C5FO00830A.
    1. Santiago-García P.A., López M.G. Agavins from Agave angustifolia and Agave potatorum affect food intake, body weight gain and satiety-related hormones (GLP-1 and ghrelin) in mice. Food Funct. 2014;5:3311–3319. doi: 10.1039/C4FO00561A.
    1. Franco-Robles E., López M.G. Implication of fructans in health: Immunomodulatory and antioxidant mechanisms. Sci. World J. 2015;2015:15. doi: 10.1155/2015/289267.
    1. Van den Ende W., Peshev D., de Gara L. Disease prevention by natural antioxidants and prebiotics acting as ROS scavengers in the gastrointestinal tract. Trends Food Sci. Technol. 2011;22:689–697. doi: 10.1016/j.tifs.2011.07.005.
    1. Zhang L., Bruce-Keller A.J., Dasuri K., Nguyen A.T., Liu Y., Keller J.N. Diet-induced metabolic disturbances as modulators of brain homeostasis. Biochim. Biophys. Acta. 2009;1792:417–422. doi: 10.1016/j.bbadis.2008.09.006.
    1. Kanoski S.E., Davidson T.L. Western diet consumption and cognitive impairment: Links to hippocampal dysfunction and obesity. Physiol. Behav. 2011;103:59–68. doi: 10.1016/j.physbeh.2010.12.003.
    1. Lindqvist A., Mohapel P., Bouter B., Frielingsdorf H., Pizzo D., Brundin P., Erlanson-Albertsson C. High-fat diet impairs hippocampal neurogenesis in male rats. Eur. J. Neurol. 2006;13:1385–1388. doi: 10.1111/j.1468-1331.2006.01500.x.
    1. Kanoski S.E., Meisel R.L., Mullins A.J., Davidson T.L. The effects of energy-rich diets on discrimination reversal learning and on bdnf in the hippocampus and prefrontal cortex of the rat. Behav. Brain Res. 2007;182:57–66. doi: 10.1016/j.bbr.2007.05.004.
    1. Stranahan A.M., Norman E.D., Lee K., Cutler R.G., Telljohann R.S., Egan J.M., Mattson M.P. Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus. 2008;18:1085–1088. doi: 10.1002/hipo.20470.
    1. Allen S.J., Watson J.J., Shoemark D.K., Barua N.U., Patel N.K. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol. Ther. 2013;138:155–175. doi: 10.1016/j.pharmthera.2013.01.004.
    1. Bekinschtein P., Cammarota M., Medina J.H. BDNF and memory processing. Neuropharmacology. 2014;76:677–683. doi: 10.1016/j.neuropharm.2013.04.024.
    1. Lee J., Seroogy K.B., Mattson M.P. Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J. Neurochem. 2002;80:539–547. doi: 10.1046/j.0022-3042.2001.00747.x.
    1. Savignac H.M., Corona G., Mills H., Chen L., Spencer J.P.E., Tzortzis G., Burnet P.W.J. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-d-aspartate receptor subunits and d-serine. Neurochem. Inter. 2013;63:756–764. doi: 10.1016/j.neuint.2013.10.006.
    1. Manfredsson F.P., Tumer N., Erdos B., Landa T., Broxson C.S., Sullivan L.F., Rising A.C., Foust K.D., Zhang Y., Muzyczka N., et al. Nigrostriatal rAAV-mediated GDNF overexpression induces robust weight loss in a rat model of age-related obesity. Mol. Ther. 2009;17:980–991. doi: 10.1038/mt.2009.45.
    1. Maswood N., Grondin R., Zhang Z., Stanford J.A., Surgener S.P., Gash D.M., Gerhardt G.A. Effects of chronic intraputamenal infusion of glial cell line-derived neurotrophic factor (GDNF) in aged rhesus monkeys. Neurobiol. Aging. 2002;23:881–889. doi: 10.1016/S0197-4580(02)00022-2.
    1. Tumer N., Scarpace P.J., Dogan M.D., Broxson C.S., Matheny M., Yurek D.M., Peden C.S., Burger C., Muzyczka N., Mandel R.J. Hypothalamic rAAV-mediated GDNF gene delivery ameliorates age-related obesity. Neurobiol. Aging. 2006;27:459–470. doi: 10.1016/j.neurobiolaging.2005.03.018.
    1. Mwangi S.M., Nezami B.G., Obukwelu B., Anitha M., Marri S., Fu P., Epperson M.F., Le N.A., Shanmugam M., Sitaraman S.V., et al. Glial cell line-derived neurotrophic factor protects against high-fat diet-induced obesity. Am. J. Physiol. Gastro Liver Physiol. 2014;306:G515–G525. doi: 10.1152/ajpgi.00364.2013.
    1. Birben E., Sahiner U.M., Sackesen C., Erzurum S., Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5:9–19. doi: 10.1097/WOX.0b013e3182439613.
    1. Park H.R., Park M., Choi J., Park K.Y., Chung H.Y., Lee J. A high-fat diet impairs neurogenesis: Involvement of lipid peroxidation and brain-derived neurotrophic factor. Neurosci. Lett. 2010;482:235–239. doi: 10.1016/j.neulet.2010.07.046.
    1. Beltowski J., Wojcicka G., Gorny D., Marciniak A. The effect of dietary-induced obesity on lipid peroxidation, antioxidant enzymes and total plasma antioxidant capacity. J. Physiol. Pharmacol. 2000;51:883–896.
    1. Morrison C.D., Pistell P.J., Ingram D.K., Johnson W.D., Liu Y., Fernandez-Kim S.O., White C.L., Purpera M.N., Uranga R.M., Bruce-Keller A.J., et al. High fat diet increases hippocampal oxidative stress and cognitive impairment in aged mice: Implications for decreased Nrf2 signaling. J. Neurochem. 2010;114:1581–1589. doi: 10.1111/j.1471-4159.2010.06865.x.
    1. Dewulf E.M., Cani P.D., Claus S.P., Fuentes S., Puylaert P.G., Neyrinck A.M., Bindels L.B., de Vos W.M., Gibson G.R., Thissen J.P., et al. Insight into the prebiotic concept: Lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut. 2013;62:1112–1121. doi: 10.1136/gutjnl-2012-303304.
    1. Salazar N., Dewulf E.M., Neyrinck A.M., Bindels L.B., Cani P.D., Mahillon J., de Vos W.M., Thissen J.-P., Gueimonde M., de los Reyes-Gavilán C.G., et al. Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clin. Nutr. 2015;34:501–507. doi: 10.1016/j.clnu.2014.06.001.
    1. Cani P.D., Dewever C., Delzenne N.M. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br. J. Nutr. 2004;92:521–526. doi: 10.1079/BJN20041225.
    1. Rozan P., Nejdi A., Hidalgo S., Bisson J.F., Desor D., Messaoudi M. Effects of lifelong intervention with an oligofructose-enriched inulin in rats on general health and lifespan. Br. J. Nutr. 2008;100:1192–1199. doi: 10.1017/S0007114508975607.
    1. Urías-Silvas J.E., Cani P.D., Delmee E., Neyrinck A., López M.G., Delzenne N.M. Physiological effects of dietary fructans extracted from Agave tequilana Gto. and Dasylirion spp. Br. J. Nutr. 2008;99:254–261. doi: 10.1017/S0007114507795338.
    1. Cani P.D., Knauf C., Iglesias M.A., Drucker D.J., Delzenne N.M., Burcelin R. Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. Diabetes. 2006;55:1484–1490. doi: 10.2337/db05-1360.
    1. Everard A., Lazarevic V., Derrien M., Girard M., Muccioli G.G., Neyrinck A.M., Possemiers S., van Holle A., Francois P., de Vos W.M., et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes. 2011;60:2775–2786. doi: 10.2337/db11-0227.
    1. Sakaguchi E., Sakoda C., Toramaru Y. Caecal fermentation and energy accumulation in the rat fed on indigestible oligosaccharides. Br. J. Nutr. 1998;80:469–476. doi: 10.1017/S0007114598001548.
    1. Daubioul C.A., Taper H.S., de Wispelaere L.D., Delzenne N.M. Dietary oligofructose lessens hepatic steatosis, but does not prevent hypertriglyceridemia in obese zucker rats. J. Nutr. 2000;130:1314–1319.
    1. Delmee E., Cani P.D., Gual G., Knauf C., Burcelin R., Maton N., Delzenne N.M. Relation between colonic proglucagon expression and metabolic response to oligofructose in high fat diet-fed mice. Life Sci. 2006;79:1007–1013. doi: 10.1016/j.lfs.2006.05.013.
    1. Jamieson J.A., Ryz N.R., Taylor C.G., Weiler H.A. Dietary long-chain inulin reduces abdominal fat but has no effect on bone density in growing female rats. Br. J. Nutr. 2008;100:451–459. doi: 10.1017/S0007114508894378.
    1. Cani P.D., Possemiers S., van de Wiele T., Guiot Y., Everard A., Rottier O., Geurts L., Naslain D., Neyrinck A., Lambert D.M., et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58:1091–1103. doi: 10.1136/gut.2008.165886.
    1. Kleessen B., Schwarz S., Boehm A., Fuhrmann H., Richter A., Henle T., Krueger M. Jerusalem artichoke and chicory inulin in bakery products affect faecal microbiota of healthy volunteers. Br. J. Nutr. 2007;98:540–549. doi: 10.1017/S0007114507730751.
    1. Layden B.T., Angueira A.R., Brodsky M., Durai V., Lowe W.L., Jr. Short chain fatty acids and their receptors: New metabolic targets. Transl. Res. 2013;161:131–140. doi: 10.1016/j.trsl.2012.10.007.
    1. Alexiou H., Franck A. Prebiotic inulin-type fructans: Nutritional benefits beyond dietary fibre source. Nutr. Bull. 2008;33:227–233. doi: 10.1111/j.1467-3010.2008.00710.x.
    1. Flint H.J., Scott K.P., Louis P., Duncan S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 2012;9:577–589. doi: 10.1038/nrgastro.2012.156.
    1. Galisteo M., Duarte J., Zarzuelo A. Effects of dietary fibers on disturbances clustered in the metabolic syndrome. J. Nutr. Biochem. 2008;19:71–84. doi: 10.1016/j.jnutbio.2007.02.009.
    1. Slavin J. Whole grains and human health. Nutr. Res. Rev. 2004;17:99–110. doi: 10.1079/NRR200374.
    1. Sayago-Ayerdi S.G., Mateos R., Ortiz-Basurto R.I., Largo C., Serrano J., Granado-Serrano A.B., Sarria B., Bravo L., Tabernero M. Effects of consuming diets containing Agave tequilana dietary fibre and jamaica calyces on body weight gain and redox status in hypercholesterolemic rats. Food Chem. 2014;148:54–59. doi: 10.1016/j.foodchem.2013.10.004.
    1. Cani P.D., Neyrinck A.M., Fava F., Knauf C., Burcelin R.G., Tuohy K.M., Gibson G.R., Delzenne N.M. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007;50:2374–2383. doi: 10.1007/s00125-007-0791-0.
    1. Anastasovska J., Arora T., Sanchez Canon G.J., Parkinson J.R., Touhy K., Gibson G.R., Nadkarni N.A., So P.W., Goldstone A.P., Thomas E.L., et al. Fermentable carbohydrate alters hypothalamic neuronal activity and protects against the obesogenic environment. Obesity. 2012;20:1016–1023. doi: 10.1038/oby.2012.6.
    1. Jackson K.G., Taylor G.R., Clohessy A.M., Williams C.M. The effect of the daily intake of inulin on fasting lipid, insulin and glucose concentrations in middle-aged men and women. Br. J. Nutr. 1999;82:23–30. doi: 10.1017/S0007114599001087.
    1. Balcazar-Munoz B.R., Martinez-Abundis E., Gonzalez-Ortiz M. Effect of oral inulin administration on lipid profile and insulin sensitivity in subjects with obesity and dyslipidemia. Rev. Med. Chile. 2003;131:597–604.
    1. Delzenne N.M., Kok N. Effects of fructans-type prebiotics on lipid metabolism. Am. J. Clin. Nutr. 2001;73:456s–458s.
    1. Kok N., Roberfroid M., Robert A., Delzenne N. Involvement of lipogenesis in the lower VLDL secretion induced by oligofructose in rats. Br. J. Nutr. 1996;76:881–890. doi: 10.1079/BJN19960094.
    1. Cryan J.F., O’Mahony S.M. The microbiome-gut-brain axis: From bowel to behavior. Neurogastroenterol. Motil. 2011;23:187–192. doi: 10.1111/j.1365-2982.2010.01664.x.
    1. Sam A.H., Troke R.C., Tan T.M., Bewick G.A. The role of the gut/brain axis in modulating food intake. Neuropharmacology. 2012;63:46–56. doi: 10.1016/j.neuropharm.2011.10.008.
    1. Schellekens H., Finger B.C., Dinan T.G., Cryan J.F. Ghrelin signalling and obesity: At the interface of stress, mood and food reward. Pharmacol. Ther. 2012;135:316–326. doi: 10.1016/j.pharmthera.2012.06.004.
    1. Burokas A., Moloney R.D., Dinan T.G., Cryan J.F. Chapter one—Microbiota regulation of the mammalian gut–brain axis. In: Sima S., Geoffrey Michael G., editors. Advances in Applied Microbiology. Volume 91. Academic Press; Cambridge, MS, USA: 2015. pp. 1–62.
    1. Pelleymounter M.A., Cullen M.J., Wellman C.L. Characteristics of BDNF-induced weight loss. Exp. Neurol. 1995;131:229–238. doi: 10.1016/0014-4886(95)90045-4.
    1. Lapchak P.A., Hefti F. BDNF and NGF treatment in lesioned rats: Effects on cholinergic function and weight gain. Neuroreport. 1992;3:405–408. doi: 10.1097/00001756-199205000-00007.
    1. Franco-Robles E., Campos-Cervantes A., Murillo-Ortiz B.O., Segovia J., Lopez-Briones S., Vergara P., Perez-Vazquez V., Solis-Ortiz M.S., Ramirez-Emiliano J. Effects of curcumin on brain-derived neurotrophic factor levels and oxidative damage in obesity and diabetes. Appl. Physiol. Nutr. Metab. 2014;39:211–218. doi: 10.1139/apnm-2013-0133.

Source: PubMed

Подписаться