Functional MRI of the placenta--From rodents to humans

R Avni, M Neeman, J R Garbow, R Avni, M Neeman, J R Garbow

Abstract

The placenta performs a wide range of physiological functions; insufficiencies in these functions may result in a variety of severe prenatal and postnatal syndromes with long-term negative impacts on human adult health. Recent advances in magnetic resonance imaging (MRI) studies of placental function, in both animal models and humans, have contributed significantly to our understanding of placental structure, blood flow, oxygenation status, and metabolic profile, and have provided important insights into pregnancy complications.

Keywords: Functional imaging; MRI; Placenta; Preclinical models.

Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

Figures

Fig. 1
Fig. 1
Perfusion measurements using contrast agents. (A) Mouse placental perfusion maps calculated by the steepest slope model on embryonic day (E) 14.5 (a,b) and E16.5 (c,d), demonstrate, in all placentas, a high-flow compartment (red colored), which lies within the central labyrinth zone, and a low-flow compartment, which matches the peripheral labyrinth and the junctional zone. Reprinted from Ref. , with permission from Elsevier. (B) Human placental circulation in normal and IUGR pregnancies. 3D Contrast-enhanced, T1-weighted images acquired 2 min following administration of gadoterate meglumine in normal (c) and IUGR placentas (f). Normal placentas show a homogeneous signal increase, while IUGR-complicated placentas display many patchy, non-perfused areas. Reprinted from Ref. , with permission from Elsevier.
Fig. 2
Fig. 2
Perfusion and flow measurements using endogenous MRI contrast. (A) Assessment of the arterial blood supply to mouse placenta of an ICR pregnant mouse (E17.5) via bidirectional arterial spin labeling (BD-ASL) MRI. A–C: Color-coded BD-ASL maps (red and blue, positive and negative BD-ASL values, respectively) show that placentas near the cervix (Panel A: L1, R1) have negative BD-ASL values, whereas those near the ovary (Panel C: L5-7) have positive values. Placentas located in the middle of the uterine horn (Panel B, L3-4) have a dispersive pattern of positive and negative BD-ASL values, suggesting a dual blood supply with separate arterial inputs from each of the feeding arteries . (B) Left panel: Placental perfusion maps overlaid on an MRI image for: (top) a normal pregnancy and (bottom) a pregnancy complicated by IUGR. The placental perfusion rate in pregnancy complicated by IUGR is reduced, with many areas displaying infarction. Right panel: Histograms of placental perfusion fraction show a significant difference between IUGR and normal pregnancies in the distribution of perfusion categories. Reprinted from Ref. , with permission from Elsevier.
Fig. 3
Fig. 3
Oxygenation studies: (A) Effect of maternal hyperoxygenation on the placenta and different fetal organs in a rat ligation model of IUGR. Box-and-whisker plots summarize changes in T2∗ values between hyperoxygenation and ambient air in placentas, fetal livers and fetal brains, in the normal and ligated IUGR uterine horns. There is a significant effect of maternal hyperoxygenation on BOLD SI in all organs. IUGR placentas show a significant reduction in the BOLD response to hyperoxygenation. Reprinted from Ref. , with permission from RSNA®; (B) Changes in human placental oxygenation BOLD signals during a maternal hyperoxic respiration challenge. Upper panel: Normalized BOLD SI of the entire placenta, in three different slices, shows a significant increase during maternal hyperoxia. Lower panel: Maternal and fetal areas within the placenta display different dynamics in response to maternal changes in oxygenation. Placental region of interests (ROIs) are shown in the inset images. Reprinted from Ref. , with permission from John Wiley and Sons.
Fig. 4
Fig. 4
Microstructure: (A) Resolving mouse placental structures using a hybrid strategy, combining DW MRI, contrast-enhanced under SPEN acquisition. Upper panel: Estimated placental compartmental fraction. Lower panel: Corresponding ADC values in each compartment. According to this analysis, maternal, fetal, and trophoblastic contributions constitute 66%, 24%, and 10% of overall placental volume, respectively. ADC values reveal a freely diffusive maternal blood pool, a strongly perfused fetal blood flow, and intermediate behavior for the trophoblastic labyrinth cell layer . (B) Human placental perfusion fraction maps in normal and IUGR pregnancies, measured using IVIM. Perfusion fraction maps overlaid on MRI images for normal pregnancy (upper panel), indicating two zones of blood movement, and for pregnancy complicated by IUGR (lower panel), in which the placenta appears far more homogenous, with its outer zone containing a significantly reduced proportion of mobile blood. Reprinted from Ref. , with permission from Elsevier.
Fig. 5
Fig. 5
Metabolism: (A) 31P MRS in healthy and IUGR complicated pregnancies: Upper panel: representative 31P spectrum of a normal human placenta at 38 weeks gestation (a), fitted spectrum (b), and residual (c). Spectral intensities of the following metabolites were evaluated: phosphomonoesters (PME = phosphoethanolamine (PE) + phosphocholine (PC)); inorganic phosphate; phosphodiesters (PDE = glycerophosphoethanolamine (GPE) + glycerophosphocholine (GPC)); phosphocreatine (PCr); and adenosine triphosphate (ATP). Lower panel: Scatter plot displaying PDE/PME spectral intensity ratio in early onset (<34 weeks) PE versus normal pregnancy. Women with early onset preeclampsia have a higher PDE/PME spectral intensity ratio than women with normal pregnancies. Reprinted from Ref. , with permission from Elsevier. (B) 1H MRS: upper panel: placental 1H MRS spectrum acquired from normal human pregnancy. Choline and lipid spectral peaks appear at frequencies of 3.21, 1.3 and 0.9 parts per million (ppm), respectively. Lower panel: Placental 1H MRS spectrum acquired from IUGR-compromised pregnancy. The lipid spectral peak appears at a frequency of 1.42 ppm. The choline peak is below the level of reliable detection. Reprinted from Ref. , with permission from PLOS ONE.

References

    1. Salomon L.J., Siauve N., Balvay D., Cuenod C.A., Vayssettes C., Luciani A. Placental perfusion MR imaging with contrast agents in a mouse model. Radiology. 2005;235(1):73–80.
    1. Taillieu F., Salomon L.J., Siauve N., Clement O., Faye N., Balvay D. Placental perfusion and permeability: simultaneous assessment with dual-echo contrast-enhanced MR imaging in mice. Radiology. 2006;241(3):737–745.
    1. Salomon L.J., Siauve N., Taillieu F., Balvay D., Vayssettes C., Frija G. In vivo dynamic MRI measurement of the noradrenaline-induced reduction in placental blood flow in mice. Placenta. 2006;27(9–10):1007–1013.
    1. Alison M., Quibel T., Balvay D., Autret G., Bourillon C., Chalouhi G.E. Measurement of placental perfusion by dynamic contrast-enhanced MRI at 4.7 T. Invest Radiol. 2013;48(7):535–542.
    1. Tomlinson T.M., Garbow J.R., Anderson J.R., Engelbach J.A., Nelson D.M., Sadovsky Y. Magnetic resonance imaging of hypoxic injury to the murine placenta. Am J Physiol Regul Integr Comp Physiol. 2010;298(2):R312–R319.
    1. Remus C.C., Sedlacik J., Wedegaertner U., Arck P., Hecher K., Adam G. Application of the steepest slope model reveals different perfusion territories within the mouse placenta. Placenta. 2013;34(10):899–906.
    1. Kording F., Forkert N.D., Sedlacik J., Adam G., Hecher K., Arck P. Automatic differentiation of placental perfusion compartments by time-to-peak analysis in mice. Placenta. 2014
    1. Deloison B., Siauve N., Aimot S., Balvay D., Thiam R., Cuenod C.A. SPIO-enhanced magnetic resonance imaging study of placental perfusion in a rat model of intrauterine growth restriction. BJOG. 2012;119(5):626–633.
    1. Plaks V., Sapoznik S., Berkovitz E., Haffner-Krausz R., Dekel N., Harmelin A. Functional phenotyping of the maternal albumin turnover in the mouse placenta by dynamic contrast-enhanced MRI. Mol Imaging Biol. 2011;13(3):481–492.
    1. Plaks V., Berkovitz E., Vandoorne K., Berkutzki T., Damari G.M., Haffner R. Survival and size are differentially regulated by placental and fetal PKBalpha/AKT1 in mice. Biol Reprod. 2011;84(3):537–545.
    1. Kay H.H., Knop R.C., Mattison D.R. Magnetic resonance imaging of monkey placenta with manganese enhancement. Am J Obstet Gynecol. 1987;157(1):185–189.
    1. Panigel M., Wolf G., Zeleznick A. Magnetic resonance imaging of the placenta in rhesus monkeys, Macaca mulatta. J Med Primatol. 1988;17(1):3–18.
    1. Frias A.E., Schabel M.C., Roberts V.H., Tudorica A., Grigsby P.L., Oh K.Y. Using dynamic contrast-enhanced MRI to quantitatively characterize maternal vascular organization in the primate placenta. Magn Reson Med Off J Soc Magn Reson Med. 2014:152.
    1. Barkhof F., Heijboer R.J., Algra P.R. Inadvertent i.v. administration of gadopentetate dimeglumine during early pregnancy. AJR Am J Roentgenol. 1992;158(5):1171.
    1. Marcos H.B., Semelka R.C., Worawattanakul S. Normal placenta: gadolinium-enhanced dynamic MR imaging. Radiology. 1997;205(2):493–496.
    1. Palacios Jaraquemada J.M., Bruno C. Gadolinium-enhanced MR imaging in the differential diagnosis of placenta accreta and placenta percreta. Radiology. 2000;216(2):610–611.
    1. Brunelli R., Masselli G., Parasassi T., De Spirito M., Papi M., Perrone G. Intervillous circulation in intra-uterine growth restriction. Correlation to fetal well being. Placenta. 2010;31(12):1051–1056.
    1. Avni R., Raz T., Biton I.E., Kalchenko V., Garbow J.R., Neeman M. Unique in utero identification of fetuses in multifetal mouse pregnancies by placental bidirectional arterial spin labeling MRI. Magn Reson Med. 2012;68(2):560–570.
    1. Raz T., Avni R., Addadi Y., Cohen Y., Jaffa A.J., Hemmings B. The hemodynamic basis for positional- and inter-fetal dependent effects in dual arterial supply of mouse pregnancies. PloS One. 2012;7(12):e52273.
    1. Gowland P.A., Francis S.T., Duncan K.R., Freeman A.J., Issa B., Moore R.J. In vivo perfusion measurements in the human placenta using echo planar imaging at 0.5 T. Magn Reson Med. 1998;40(3):467–473.
    1. Francis S.T., Duncan K.R., Moore R.J., Baker P.N., Johnson I.R., Gowland P.A. Non-invasive mapping of placental perfusion. Lancet. 1998;351(9113):1397–1399.
    1. Derwig I., Lythgoe D.J., Barker G.J., Poon L., Gowland P., Yeung R. Association of placental perfusion, as assessed by magnetic resonance imaging and uterine artery Doppler ultrasound, and its relationship to pregnancy outcome. Placenta. 2013;34(10):885–891.
    1. Duncan K.R., Gowland P., Francis S., Moore R., Baker P.N., Johnson I.R. The investigation of placental relaxation and estimation of placental perfusion using echo-planar magnetic resonance imaging. Placenta. 1998;19(7):539–543.
    1. Abramovitch R., Corchia N., Elchala U., Ginosar Y. Changes in placental and fetal organ perfusion during chronic maternal hypoxia: assessment by BOLD MRI during brief hypercapnic and hyperoxic challenge. Proc Int Soc Mag Reson Med. 2011;19
    1. Aimot-Macron S., Salomon L.J., Deloison B., Thiam R., Cuenod C.A., Clement O. In vivo MRI assessment of placental and foetal oxygenation changes in a rat model of growth restriction using blood oxygen level-dependent (BOLD) magnetic resonance imaging. Eur Radiol. 2013;23(5):1335–1342.
    1. Chalouhi G.E., Alison M., Deloison B., Thiam R., Autret G., Balvay D. Fetoplacental oxygenation in an intrauterine growth restriction rat model by using blood oxygen level-dependent MR imaging at 4.7 T. Radiology. 2013;269(1):122–129.
    1. Wedegartner U., Tchirikov M., Schafer S., Priest A.N., Kooijman H., Adam G. Functional MR imaging: comparison of BOLD signal intensity changes in fetal organs with fetal and maternal oxyhemoglobin saturation during hypoxia in sheep. Radiology. 2006;238(3):872–880.
    1. Sorensen A., Pedersen M., Tietze A., Ottosen L., Duus L., Uldbjerg N. BOLD MRI in sheep fetuses: a non-invasive method for measuring changes in tissue oxygenation. Ultrasound Obstet Gynecol. 2009;34(6):687–692.
    1. Sorensen A., Peters D., Simonsen C., Pedersen M., Stausbol-Gron B., Christiansen O.B. Changes in human fetal oxygenation during maternal hyperoxia as estimated by BOLD MRI. Prenat Diagn. 2013;33(2):141–145.
    1. Sorensen A., Peters D., Frund E., Lingman G., Christiansen O., Uldbjerg N. Changes in human placental oxygenation during maternal hyperoxia estimated by blood oxygen level-dependent magnetic resonance imaging (BOLD MRI) Ultrasound Obstet Gynecol. 2013;42(3):310–314.
    1. Huen I., Morris D.M., Wright C., Parker G.J., Sibley C.P., Johnstone E.D. R1 and R2 * changes in the human placenta in response to maternal oxygen challenge. Magn Reson Med. 2013;70(5):1427–1433.
    1. Solomon E., Avni R., Hadas R., Raz T., Garbow J.R., Bendel P. Major mouse placental compartments revealed by diffusion-weighted MRI, contrast-enhanced MRI, and fluorescence imaging. Proc Natl Acad Sci U S A. 2014;111(28):10353–10358.
    1. Alison M., Chalouhi G.E., Autret G., Balvay D., Thiam R., Salomon L.J. Use of intravoxel incoherent motion MR imaging to assess placental perfusion in a murine model of placental insufficiency. Investig Radiol. 2013;48(1):17–23.
    1. Manganaro L., Fierro F., Tomei A., La Barbera L., Savelli S., Sollazzo P. MRI and DWI: feasibility of DWI and ADC maps in the evaluation of placental changes during gestation. Prenat Diagn. 2010;30(12–13):1178–1184.
    1. Sivrioglu A.K., Ozcan U., Turk A., Ulus S., Yildiz M.E., Sonmez G. Evaluation of the placenta with relative apparent diffusion coefficient and T2 signal intensity analysis. Diagn Intervent Radiol. 2013;19(6):495–500.
    1. Moore R.J., Issa B., Tokarczuk P., Duncan K.R., Boulby P., Baker P.N. In vivo intravoxel incoherent motion measurements in the human placenta using echo-planar imaging at 0.5 T. Magn Reson Med. 2000;43(2):295–302.
    1. Moore R.J., Strachan B.K., Tyler D.J., Duncan K.R., Baker P.N., Worthington B.S. In utero perfusing fraction maps in normal and growth restricted pregnancy measured using IVIM echo-planar MRI. Placenta. 2000;21(7):726–732.
    1. Bonel H.M., Stolz B., Diedrichsen L., Frei K., Saar B., Tutschek B. Diffusion-weighted MR imaging of the placenta in fetuses with placental insufficiency. Radiology. 2010;257(3):810–819.
    1. Javor D., Nasel C., Schweim T., Dekan S., Chalubinski K., Prayer D. In vivo assessment of putative functional placental tissue volume in placental intrauterine growth restriction (IUGR) in human fetuses using diffusion tensor magnetic resonance imaging. Placenta. 2013;34(8):676–680.
    1. Moore R.J., Ong S.S., Tyler D.J., Duckett R., Baker P.N., Dunn W.R. Spiral artery blood volume in normal pregnancies and those compromised by pre-eclampsia. NMR Biomed. 2008;21(4):376–380.
    1. Sohlberg S., Mulic-Lutvica A., Lindgren P., Ortiz-Nieto F., Wikstrom A.K., Wikstrom J. Placental perfusion in normal pregnancy and early and late preeclampsia: a magnetic resonance imaging study. Placenta. 2014;35(3):202–206.
    1. Morita S., Ueno E., Fujimura M., Muraoka M., Takagi K., Fujibayashi M. Feasibility of diffusion-weighted MRI for defining placental invasion. J Magn Reson Imaging. 2009;30(3):666–671.
    1. Weindling A.M., Griffiths R.D., Garden A.S., Martin P.A., Edwards R.H. Phosphorus metabolites in the human placenta estimated in vivo by magnetic resonance spectroscopy. Arch Dis Child. 1991;66(7 Spec No):780–782.
    1. Sohlberg S., Wikstrom A.K., Olovsson M., Lindgren P., Axelsson O., Mulic-Lutvica A. In vivo (3)(1)P-MR spectroscopy in normal pregnancy, early and late preeclampsia: a study of placental metabolism. Placenta. 2014;35(5):318–323.
    1. Denison F.C., Semple S.I., Stock S.J., Walker J., Marshall I., Norman J.E. Novel use of proton magnetic resonance spectroscopy (1HMRS) to non-invasively assess placental metabolism. PloS One. 2012;7(8):e42926.
    1. MacMaught G., Semple S., Gray C., Simpson M., Norman J., Walker J. Reduced glutamate: choline ratio by 1H MRS as a biomarker for placental insufficiency in the growth restricted fetus. Arch Dis Child Fetal Neonatal Ed. 2014;99(Suppl. 1):A85.

Source: PubMed

Подписаться