Pharmacogenomic Variants May Influence the Urinary Excretion of Novel Kidney Injury Biomarkers in Patients Receiving Cisplatin

Cara Chang, Yichun Hu, Susan L Hogan, Nickie Mercke, Madeleine Gomez, Cindy O'Bryant, Daniel W Bowles, Blessy George, Xia Wen, Lauren M Aleksunes, Melanie S Joy, Cara Chang, Yichun Hu, Susan L Hogan, Nickie Mercke, Madeleine Gomez, Cindy O'Bryant, Daniel W Bowles, Blessy George, Xia Wen, Lauren M Aleksunes, Melanie S Joy

Abstract

Nephrotoxicity is a dose limiting side effect associated with the use of cisplatin in the treatment of solid tumors. The degree of nephrotoxicity is dictated by the selective accumulation of cisplatin in renal tubule cells due to: (1) uptake by organic cation transporter 2 (OCT2) and copper transporter 1 (CTR1); (2) metabolism by glutathione S-transferases (GSTs) and γ-glutamyltransferase 1 (GGT1); and (3) efflux by multidrug resistance-associated protein 2 (MRP2) and multidrug and toxin extrusion protein 1 (MATE1). The purpose of this study was to determine the significance of single nucleotide polymorphisms that regulate the expression and function of transporters and metabolism genes implicated in development of acute kidney injury (AKI) in cisplatin treated patients. Changes in the kidney function were assessed using novel urinary protein biomarkers and traditional markers. Genotyping was conducted by the QuantStudio 12K Flex Real-Time PCR System using a custom open array chip with metabolism, transport, and transcription factor polymorphisms of interest to cisplatin disposition and toxicity. Traditional and novel biomarker assays for kidney toxicity were assessed for differences according to genotype by ANOVA. Allele and genotype frequencies were determined based on Caucasian population frequencies. The polymorphisms rs596881 (SLC22A2/OCT2), and rs12686377 and rs7851395 (SLC31A1/CTR1) were associated with renoprotection and maintenance of estimated glomerular filtration rate (eGFR). Polymorphisms in SLC22A2/OCT2, SLC31A1/CTRI, SLC47A1/MATE1, ABCC2/MRP2, and GSTP1 were significantly associated with increases in the urinary excretion of novel AKI biomarkers: KIM-1, TFF3, MCP1, NGAL, clusterin, cystatin C, and calbindin. Knowledge concerning which genotypes in drug transporters are associated with cisplatin-induced nephrotoxicity may help to identify at-risk patients and initiate strategies, such as using lower or fractionated cisplatin doses or avoiding cisplatin altogether, in order to prevent AKI.

Keywords: CTR1; GGT1; GST; KEAP1; MATE1; MRP2; NRF2; OCT2; acute kidney injury; cisplatin; nephrotoxicity; pharmacogenomics.

Conflict of interest statement

The authors declared no conflict of interest.

Figures

Figure 1
Figure 1
(A) Comparisons of SLC22A2 (rs596881) genotypes on eGFR in ambulatory cancer patients prescribed cisplatin. Patients carrying a variant allele of rs596881 in SLC22A2 exhibited statistically significant increases in eGFR (p = 0.01). (B,C) Comparisons of SLC31A1 (rs12686377 and rs7851395) genotypes on eGFR in ambulatory cancer patients prescribed cisplatin. Homozygous variant patients for SLC31A1 (rs12686377 and rs7851395) exhibited eGFR protection with cisplatin therapy (p = 0.01 and p = 0.04). Graphs indicate percent changes in eGFR from baseline. Abbreviations: Estimated glomerular filtration rate: eGFR, Wildtype: WT, Variant: VAR.
Figure 2
Figure 2
(A) Comparison of absolute KIM-1 concentrations by SLC22A2 (rs316019) genotype in ambulatory cancer patients prescribed cisplatin. Statistically significant increases of KIM-1 at baseline (p = 0.02), Day 3 (p = 0.03), and Day 10 (p = 0.046) were demonstrated in patients expressing the SLC22A2 rs316019 variant. (B) Comparison of absolute KIM-1 concentrations to ABCC2 (rs2273697) genotype in ambulatory cancer patients prescribed cisplatin. Statistically significant increases of KIM-1 at baseline (p = 0.02), Day 3 (p = 0.03) and Day 10 (p = 0.046) were demonstrated in patients expressing the ABCC2 rs2273697 variant. Error bars represent standard deviations. Abbreviations: Kidney injury molecule 1: KIM-1, Wildtype: WT, Variant: Var.
Figure 3
Figure 3
Comparison of calbindin absolute concentrations to ABCC2 (rs3740066) genotype in ambulatory cancer patients prescribed cisplatin. Absolute concentrations of calbindin were elevated in patients with the variant allele at all time points; statistically significant at baseline (p = 0.047), Day 3 (p = 0.02), and Day 10 (p = 0.02) versus homozygous wildtype patients. Error bars represent standard deviations. Abbreviations: Wild type: WT, Variant: Var.
Figure 4
Figure 4
Variant alleles in KEAP1 (rs11085735) are correlated with increased concentrations of TFF3 and cystatin C. (A) Absolute concentrations of cystatin C showed a statistically significant increase on Day 3 (p = 0.01) and Day 10 (p = 0.03) in patients expressing the variant allele of KEAP1. (B) Absolute concentrations of TFF3 were increased at baseline (p = 0.01), Day 3 (p = 0.03) and Day 10 (p = 0.03) in patients who carried at least one variant copy of KEAP1. Error bars represent standard deviations. Abbreviations: Trefoil factor: TFF3, Wildtype: WT, Variant: Var.

References

    1. Bolis G., Favalli G., Danese S., Zanaboni F., Mangili G., Scarabelli C., Tateo S., Valsecchi M.G., Scarfone G., Richiardi G., et al. Weekly cisplatin given for 2 months versus cisplatin plus cyclophosphamide given for 5 months after cytoreductive surgery for advanced ovarian cancer. J. Clin. Oncol. 1997;15:1938–1944. doi: 10.1200/JCO.1997.15.5.1938.
    1. Coppin C.M., Gospodarowicz M.K., James K., Tannock I.F., Zee B., Carson J., Pater J., Sullivan L.D. Improved local control of invasive bladder cancer by concurrent cisplatin and preoperative or definitive radiation. The National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 1996;14:2901–2907. doi: 10.1200/JCO.1996.14.11.2901.
    1. Gatzemeier U., von Pawel J., Gottfried M., ten Velde G.P., Mattson K., de Marinis F., Harper P., Salvati F., Robinet G., Lucenti A., et al. Phase III comparative study of high-dose cisplatin versus a combination of paclitaxel and cisplatin in patients with advanced non-small-cell lung cancer. J. Clin. Oncol. 2000;18:3390–3399. doi: 10.1200/JCO.2000.18.19.3390.
    1. Hoskins P., Eisenhauer E., Vergote I., Dubuc-Lissoir J., Fisher B., Grimshaw R., Oza A., Plante M., Stuart G., Vermorken J. Phase II feasibility study of sequential couplets of Cisplatin/Topotecan followed by paclitaxel/cisplatin as primary treatment for advanced epithelial ovarian cancer: A National Cancer Institute of Canada Clinical Trials Group Study. J. Clin. Oncol. 2000;18:4038–4044. doi: 10.1200/JCO.2000.18.24.4038.
    1. Pabla N., Dong Z. Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies. Kidney Int. 2008;73:994–1007. doi: 10.1038/sj.ki.5002786.
    1. Planting A.S., Catimel G., de Mulder P.H., de Graeff A., Hoppener F., Verweij J., Oster W., Vermorken J.B. Randomized study of a short course of weekly cisplatin with or without amifostine in advanced head and neck cancer. EORTC Head and Neck Cooperative Group. Ann. Oncol. 1999;10:693–700. doi: 10.1023/A:1008353505916.
    1. Rose P.G., Bundy B.N., Watkins E.B., Thigpen J.T., Deppe G., Maiman M.A., Clarke-Pearson D.L., Insalaco S. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N. Engl. J. Med. 1999;340:1144–1153. doi: 10.1056/NEJM199904153401502.
    1. Lebwohl D., Canetta R. Clinical development of platinum complexes in cancer therapy: An historical perspective and an update. Eur. J. Cancer. 1998;34:1522–1534. doi: 10.1016/S0959-8049(98)00224-X.
    1. Shiraishi F., Curtis L.M., Truong L., Poss K., Visner G.A., Madsen K., Nick H.S., Agarwal A. Heme oxygenase-1 gene ablation or expression modulates cisplatin-induced renal tubular apoptosis. Am. J. Physiol. Renal. Physiol. 2000;278:F726–F736.
    1. Ozkok A., Edelstein C.L. Pathophysiology of cisplatin-induced acute kidney injury. BioMed Res. Int. 2014;2014:967826. doi: 10.1155/2014/967826.
    1. Bag A., Jyala N.S., Bag N. Cytochrome P450 1A1 genetic polymorphisms as cancer biomarkers. Indian J. Cancer. 2015;52:479–489. doi: 10.4103/0019-509X.178380.
    1. Townsend D.M., Deng M., Zhang L., Lapus M.G., Hanigan M.H. Metabolism of Cisplatin to a nephrotoxin in proximal tubule cells. J. Am. Soc. Nephrol. 2003;14:1–10. doi: 10.1097/01.ASN.0000042803.28024.92.
    1. Ciarimboli G., Deuster D., Knief A., Sperling M., Holtkamp M., Edemir B., Pavenstadt H., Lanvers-Kaminsky C., am Zehnhoff-Dinnesen A., Schinkel A.H., et al. Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am. J. Pathol. 2010;176:1169–1180. doi: 10.2353/ajpath.2010.090610.
    1. Ishida S., Lee J., Thiele D.J., Herskowitz I. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc. Natl. Acad. Sci. USA. 2002;99:14298–14302. doi: 10.1073/pnas.162491399.
    1. Sanchez-Gonzalez P.D., Lopez-Hernandez F.J., Lopez-Novoa J.M., Morales A.I. An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity. Crit. Rev. Toxicol. 2011;41:803–821. doi: 10.3109/10408444.2011.602662.
    1. Hanigan M.H., Lykissa E.D., Townsend D.M., Ou C.N., Barrios R., Lieberman M.W. γ-Glutamyl transpeptidase-deficient mice are resistant to the nephrotoxic effects of cisplatin. Am. J. Pathol. 2001;159:1889–1894. doi: 10.1016/S0002-9440(10)63035-0.
    1. Ishikawa T., Wright C.D., Ishizuka H. GS-X pump is functionally overexpressed in cis-diamminedichloroplatinum (II)-resistant human leukemia HL-60 cells and down-regulated by cell differentiation. J. Biol. Chem. 1994;269:29085–29093.
    1. Nakamura T., Yonezawa A., Hashimoto S., Katsura T., Inui K. Disruption of multidrug and toxin extrusion MATE1 potentiates cisplatin-induced nephrotoxicity. Biochem. Pharmacol. 2010;80:1762–1767. doi: 10.1016/j.bcp.2010.08.019.
    1. Wen X., Buckley B., McCandlish E., Goedken M.J., Syed S., Pelis R., Manautou J.E., Aleksunes L.M. Transgenic expression of the human MRP2 transporter reduces cisplatin accumulation and nephrotoxicity in Mrp2-null mice. Am. J. Pathol. 2014;184:1299–1308. doi: 10.1016/j.ajpath.2014.01.025.
    1. Filipski K.K., Mathijssen R.H., Mikkelsen T.S., Schinkel A.H., Sparreboom A. Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin. Pharmacol. Ther. 2009;86:396–402. doi: 10.1038/clpt.2009.139.
    1. Friling R.S., Bensimon A., Tichauer Y., Daniel V. Xenobiotic-inducible expression of murine glutathione S-transferase Ya subunit gene is controlled by an electrophile-responsive element. Proc. Natl. Acad. Sci. USA. 1990;87:6258–6262. doi: 10.1073/pnas.87.16.6258.
    1. Nguyen T., Sherratt P.J., Pickett C.B. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu. Rev. Pharmacol. Toxicol. 2003;43:233–260. doi: 10.1146/annurev.pharmtox.43.100901.140229.
    1. Rushmore T.H., Morton M.R., Pickett C.B. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J. Biol. Chem. 1991;266:11632–11639.
    1. Kansanen E., Kuosmanen S.M., Leinonen H., Levonen A.L. The κ1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol. 2013;1:45–49. doi: 10.1016/j.redox.2012.10.001.
    1. Aleksunes L.M., Goedken M.J., Rockwell C.E., Thomale J., Manautou J.E., Klaassen C.D. Transcriptional regulation of renal cytoprotective genes by Nrf2 and its potential use as a therapeutic target to mitigate cisplatin-induced nephrotoxicity. J. Pharmacol. Exp. Ther. 2010;335:2–12. doi: 10.1124/jpet.110.170084.
    1. Star R.A. Treatment of acute renal failure. Kidney Int. 1998;54:1817–1831. doi: 10.1046/j.1523-1755.1998.00210.x.
    1. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012;120:c179–c184. doi: 10.1159/000339789.
    1. Group K.A.W. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. 2012;17:1–138.
    1. Han W.K., Bailly V., Abichandani R., Thadhani R., Bonventre J.V. Kidney Injury Molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney Int. 2002;62:237–244. doi: 10.1046/j.1523-1755.2002.00433.x.
    1. Takashi M., Zhu Y., Miyake K., Kato K. Urinary 28-kD calbindin-D as a new marker for damage to distal renal tubules caused by cisplatin-based chemotherapy. Urol. Int. 1996;56:174–179. doi: 10.1159/000282835.
    1. Waring W.S., Moonie A. Earlier recognition of nephrotoxicity using novel biomarkers of acute kidney injury. Clin. Toxicol. 2011;49:720–728. doi: 10.3109/15563650.2011.615319.
    1. Yu Y., Jin H., Holder D., Ozer J.S., Villarreal S., Shughrue P., Shi S., Figueroa D.J., Clouse H., Su M., et al. Urinary biomarkers trefoil factor 3 and albumin enable early detection of kidney tubular injury. Nat. Biotechnol. 2010;28:470–477. doi: 10.1038/nbt.1624.
    1. Levey A.S., Coresh J., Balk E., Kausz A.T., Levin A., Steffes M.W., Hogg R.J., Perrone R.D., Lau J., Eknoyan G. National Kidney Foundation practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Ann. Intern. Med. 2003;139:137–147. doi: 10.7326/0003-4819-139-2-200307150-00013.
    1. Bai X., Chen Y., Hou X., Huang M., Jin J. Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metab. Rev. 2016;48:541–567. doi: 10.1080/03602532.2016.1197239.
    1. Atilano-Roque A., Aleksunes L.M., Joy M.S. Bardoxolone methyl modulates efflux transporter and detoxifying enzyme expression in cisplatin-induced kidney cell injury. Toxicol. Lett. 2016;259:52–59. doi: 10.1016/j.toxlet.2016.07.021.
    1. Lanvers-Kaminsky C., Sprowl J.A., Malath I., Deuster D., Eveslage M., Schlatter E., Mathijssen R.H., Boos J., Jurgens H., Am Zehnhoff-Dinnesen A.G., et al. Human OCT2 variant c.808G>T confers protection effect against cisplatin-induced ototoxicity. Pharmacogenomics. 2015;16:323–332. doi: 10.2217/pgs.14.182.
    1. Qian C.Y., Zheng Y., Wang Y., Chen J., Liu J.Y., Zhou H.H., Yin J.Y., Liu Z.Q. Associations of genetic polymorphisms of the transporters organic cation transporter 2 (OCT2), multidrug and toxin extrusion 1 (MATE1), and ATP-binding cassette subfamily C member 2 (ABCC2) with platinum-based chemotherapy response and toxicity in non-small cell lung cancer patients. Chin. J. Cancer. 2016;35:85.
    1. Christensen M.M., Pedersen R.S., Stage T.B., Brasch-Andersen C., Nielsen F., Damkier P., Beck-Nielsen H., Brosen K. A gene-gene interaction between polymorphisms in the OCT2 and MATE1 genes influences the renal clearance of metformin. Pharmacogenet. Genom. 2013;23:526–534. doi: 10.1097/FPC.0b013e328364a57d.
    1. Wanga V., Venuto C., Morse G.D., Acosta E.P., Daar E.S., Haas D.W., Li C., Shepherd B.E. Genomewide association study of tenofovir pharmacokinetics and creatinine clearance in AIDS Clinical Trials Group protocol A5202. Pharmacogenet. Genom. 2015;25:450–461. doi: 10.1097/FPC.0000000000000156.
    1. Xu X., Duan L., Zhou B., Ma R., Zhou H., Liu Z. Prediction of copper transport protein 1 (CTR1) genotype on severe cisplatin induced toxicity in non-small cell lung cancer (NSCLC) patients. Lung Cancer. 2012;77:438–442. doi: 10.1016/j.lungcan.2012.03.023.
    1. Xu X., Duan L., Zhou B., Ma R., Zhou H., Liu Z. Genetic polymorphism of copper transporter protein 1 is related to platinum resistance in Chinese non-small cell lung carcinoma patients. Clin. Exp. Pharmacol. Physiol. 2012;39:786–792. doi: 10.1111/j.1440-1681.2012.05741.x.
    1. Chen Y., Teranishi K., Li S., Yee S.W., Hesselson S., Stryke D., Johns S.J., Ferrin T.E., Kwok P., Giacomini K.M. Genetic variants in multidrug and toxic compound extrusion-1, hMATE1, alter transport function. Pharmacogenom. J. 2009;9:127–136. doi: 10.1038/tpj.2008.19.
    1. Becker M.L., Visser L.E., van Schaik R.H., Hofman A., Uitterlinden A.G., Stricker B.H. Interaction between polymorphisms in the OCT1 and MATE1 transporter and metformin response. Pharmacogenet. Genom. 2010;20:38–44. doi: 10.1097/FPC.0b013e328333bb11.
    1. He R., Zhang D., Lu W., Zheng T., Wan L., Liu F., Jia W. SLC47A1 gene rs2289669 G>A variants enhance the glucose-lowering effect of metformin via delaying its excretion in Chinese type 2 diabetes patients. Diabetes Res. Clin. Pract. 2015;109:57–63. doi: 10.1016/j.diabres.2015.05.003.
    1. Stocker S.L., Morrissey K.M., Yee S.W., Castro R.A., Xu L., Dahlin A., Ramirez A.H., Roden D.M., Wilke R.A., McCarty C.A., et al. The effect of novel promoter variants in MATE1 and MATE2 on the pharmacokinetics and pharmacodynamics of metformin. Clin. Pharmacol. Ther. 2013;93:186–194. doi: 10.1038/clpt.2012.210.
    1. Xiao D., Guo Y., Li X., Yin J.Y., Zheng W., Qiu X.W., Xiao L., Liu R.R., Wang S.Y., Gong W.J., et al. The Impacts of SLC22A1 rs594709 and SLC47A1 rs2289669 Polymorphisms on Metformin Therapeutic Efficacy in Chinese Type 2 Diabetes Patients. Int. J. Endocrinol. 2016;2016:4350712. doi: 10.1155/2016/4350712.
    1. Ma C.L., Wu X.Y., Jiao Z., Hong Z., Wu Z.Y., Zhong M.K. SCN1A, ABCC2 and UGT2B7 gene polymorphisms in association with individualized oxcarbazepine therapy. Pharmacogenomics. 2015;16:347–360. doi: 10.2217/pgs.14.186.
    1. Qu J., Zhou B.T., Yin J.Y., Xu X.J., Zhao Y.C., Lei G.H., Tang Q., Zhou H.H., Liu Z.Q. ABCC2 polymorphisms and haplotype are associated with drug resistance in Chinese epileptic patients. CNS Neurosci. Ther. 2012;18:647–651. doi: 10.1111/j.1755-5949.2012.00336.x.
    1. Sha’ari H.M., Haerian B.S., Baum L., Saruwatari J., Tan H.J., Rafia M.H., Raymond A.A., Kwan P., Ishitsu T., Nakagawa K., et al. ABCC2 rs2273697 and rs3740066 polymorphisms and resistance to antiepileptic drugs in Asia Pacific epilepsy cohorts. Pharmacogenomics. 2014;15:459–466. doi: 10.2217/pgs.13.239.
    1. Ufer M., von Stulpnagel C., Muhle H., Haenisch S., Remmler C., Majed A., Plischke H., Stephani U., Kluger G., Cascorbi I. Impact of ABCC2 genotype on antiepileptic drug response in Caucasian patients with childhood epilepsy. Pharmacogenet. Genom. 2011;21:624–630. doi: 10.1097/FPC.0b013e3283498131.
    1. Nishijima T., Komatsu H., Higasa K., Takano M., Tsuchiya K., Hayashida T., Oka S., Gatanaga H. Single Nucleotide Polymorphisms in ABCC2 Associate With Tenofovir-Induced Kidney Tubular Dysfunction in Japanese Patients with HIV-1 Infection: A Pharmacogenetic Study. Clin. Infect. Dis. 2012;55:1558–1567. doi: 10.1093/cid/cis772.
    1. Sprowl J.A., Gregorc V., Lazzari C., Mathijssen R.H., Loos W.J., Sparreboom A. Associations between ABCC2 polymorphisms and cisplatin disposition and efficacy. Clin. Pharmacol. Ther. 2012;91:1022–1026. doi: 10.1038/clpt.2011.330.
    1. Lecomte T., Landi B., Beaune P., Laurent-Puig P., Loriot M.A. Glutathione S-transferase P1 polymorphism (Ile105Val) predicts cumulative neuropathy in patients receiving oxaliplatin-based chemotherapy. Clin. Cancer Res. 2006;12:3050–3066. doi: 10.1158/1078-0432.CCR-05-2076.
    1. Stoehlmacher J., Park D.J., Zhang W., Yang D., Groshen S., Zahedy S., Lenz H.J. A multivariate analysis of genomic polymorphisms: Prediction of clinical outcome to 5-FU/oxaliplatin combination chemotherapy in refractory colorectal cancer. Br. J. Cancer. 2004;91:344–354. doi: 10.1038/sj.bjc.6601975.
    1. Spracklen T.F., Vorster A.A., Ramma L., Dalvie S., Ramesar R.S. Promoter region variation in NFE2L2 influences susceptibility to ototoxicity in patients exposed to high cumulative doses of cisplatin. Pharmacogenomics J. 2016 doi: 10.1038/tpj.2016.52.
    1. World Medical Association Declaration of Helsinki Ethical principles for medical research involving human subjects. JAMA. 2013;310:2191–2194.
    1. George B., Wen X., Mercke N., Gomez M., O’Bryant C., Bowles D.W., Hu Y., Hogan S.L., Joy M.S., Aleksunes L.M. Profiling of kidney injury biomarkers in patients receiving cisplatin: Time-dependent changes in absence of clinical nephrotoxicity. Clin. Pharmacol. Ther. 2017;101:510–518. doi: 10.1002/cpt.606.

Source: PubMed

Подписаться