Impulsive behaviour induced by both NMDA receptor antagonism and GABAA receptor activation in rat ventromedial prefrontal cortex

Emily R Murphy, Anushka B P Fernando, Gonzalo P Urcelay, Emma S J Robinson, Adam C Mar, David E H Theobald, Jeffrey W Dalley, Trevor W Robbins, Emily R Murphy, Anushka B P Fernando, Gonzalo P Urcelay, Emma S J Robinson, Adam C Mar, David E H Theobald, Jeffrey W Dalley, Trevor W Robbins

Abstract

Rationale: Previous work has demonstrated a profound effect of N-methyl-D: -aspartic acid receptor (NMDAR) antagonism in the infralimbic cortex (IL) to selectively elevate impulsive responding in a rodent reaction time paradigm. However, the mechanism underlying this effect is unclear.

Objectives: This series of experiments investigated the pharmacological basis of this effect in terms of excitatory and inhibitory neurotransmission. We tested several pharmacological mechanisms that might produce the effect of NMDAR antagonism via disruption or dampening of IL output.

Methods: Drugs known to affect brain GABA or glutamate function were tested in rats pre-trained on a five-choice serial reaction time task (5-CSRTT) following either their systemic administration or direct administration into the IL.

Results: Systemic lamotrigine administration (15 mg/kg), which attenuates excess glutamate release, did not counteract the ability of the intra-IL NMDAR antagonist 3-((R)-2-carboxypiperazin-4-yl)-propyl-L: -phosphonic acid ((R)-CPP) to increase premature responding on the 5-CSRTT. Putative elevation of local extracellular glutamate via intra-IL infusions of the selective glutamate reuptake inhibitor DL: -threo-β-benzyloxyaspartate as well as local α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonism also had no effect on this task. However, intra-IL infusions of the GABA(A) receptor agonist muscimol produced qualitatively but not quantitatively comparable increases in impulsive responding to those elicited by (R)-CPP. Moreover, the GABA(A) receptor antagonist bicuculline blocked the increase in impulsivity produced by (R)-CPP when infused in the IL.

Conclusions: These findings implicate glutamatergic and GABAergic mechanisms in the IL in the expression of impulsivity and suggest that excessive glutamate release may not underlie increased impulsivity induced by local NMDA receptor antagonism.

Figures

Fig. 1
Fig. 1
Composite diagram illustrating the placement of injector tips in PL cortex (light grey) and IL cortex (dark grey) across all experiments. Adapted from Paxinos and Watson (from Bregma: top +3.7 mm; middle +3.2 mm; bottom +2.7 mm)
Fig. 2
Fig. 2
Percentage of premature responding in the 5-CSRTT following the infusion of 50 ng/side (R)-CPP into IL cortex in rats pretreated with either 15 mg/kg LTG or vehicle (n = 6). (Asterisk) indicates main effect of drug 2 (veh+veh, LTG+veh vs. veh+(R)-CPP, LTG+(R)-CPP)
Fig. 3
Fig. 3
Proportion of premature responses (arcsine transformation) following either the administration of PBS or muscimol into the PL (n = 6) or IL (n = 7). Asterisk indicates p < 0.05 compared to the PBS control condition. Mean raw scores (SEM) of percentage premature responding. PL, percentage premature responding: mean = 3.7% (0.07); muscimol, percentage premature responding: mean = 8.8% (3.4). IL, percentage premature responding: mean = 8.4% (2.1); muscimol, percentage premature responding: mean = 33.9% (7.3)
Fig. 4
Fig. 4
Percentage of premature responding in the 5-CSRTT following the infusion of 50 ng/side (R)-CPP into IL cortex in rats pretreated with either 50 ng/side bicuculline or vehicle (n = 6). Asterisk indicates main effect of drug 1 (veh+veh, veh+(R)-CPP vs. BIC+veh, BIC+(R)-CPP) and number sign indicates main effect of drug 2 (veh+veh, BIC+veh vs. veh+(R)-CPP, BIC+(R)-CPP). Plus sign indicates significance with respect to veh+veh

References

    1. Allen T, Naranyanan N, Kholodar-Smith D, Zhao Y, Laubach M, Brown T. Imaging the spread of reversible brain inactivations using fluorescent muscimol. J Neurosci Methods. 2008;171:30–38. doi: 10.1016/j.jneumeth.2008.01.033.
    1. Amat J, Baratta MV, Paul E, Bland ST, Watkins LR, Maier SF. Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat Neurosci. 2005;8:365–371. doi: 10.1038/nn1399.
    1. Bannerman DM, Deacon RM, Seeburg PH, Rawlins JN. GluR-A-deficient mice display normal acquisition of a hippocampus-dependent spatial reference memory task but are impaired during spatial reversal. Behav Neurosci. 2003;117:866–870. doi: 10.1037/0735-7044.117.4.866.
    1. Bannerman DM, Rawlins JN, Good MA. The drugs don’t work—or do they? Pharmacological and transgenic studies of the contribution of NMDA and GluR-A-containing AMPA receptors to hippocampal-dependent memory. Psychopharmacology (Berl) 2006;188:552–566. doi: 10.1007/s00213-006-0403-6.
    1. Benes FM, Berretta S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology. 2001;25:1–27. doi: 10.1016/S0893-133X(01)00225-1.
    1. Biondo AM, Clements RL, Hayes DJ, Eshpeter B, Greenshaw AJ. NMDA or AMPA/kainate receptor blockade prevents acquisition of conditioned place preference induced by D(2/3) dopamine receptor stimulation in rats. Psychopharmacology (Berl) 2005;179:189–197. doi: 10.1007/s00213-005-2201-y.
    1. Blondeau C, Dellu-Hagedorn F. Dimensional analysis of ADHD subtypes in rats. Biol Psychiatry. 2007;61:1340–1350. doi: 10.1016/j.biopsych.2006.06.030.
    1. Burns LH, Everitt BJ, Kelley AE, Robbins TW. Glutamate-dopamine interactions in the ventral striatum: role in locomotor activity and responding with conditioned reinforcement. Psychopharmacology (Berl) 1994;115:516–528. doi: 10.1007/BF02245576.
    1. Cardinal RN, Aitken MRF (2006) ANOVA for the behavioural sciences researcher. Lawrence Erlbaum Associates, Inc., New Jersey
    1. Cardinal RN, Aitken MRF (2010) Whisker: a client—server high-performance multimedia research control system. Behav Res Methods 42:1059–1071
    1. Carli M, Robbins TW, Evenden JL, Everitt BJ. Effects of lesions to ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behav Brain Res. 1983;9:361–380. doi: 10.1016/0166-4328(83)90138-9.
    1. Castel-Branco MM, Figueiredo IV, Falcao AC, Macedo TR, Caramona MM. Influence of administration vehicles and drug formulations on the pharmacokinetic profile of lamotrigine in rats. Fundam Clin Pharmacol. 2002;16:331–336. doi: 10.1046/j.1472-8206.2002.00096.x.
    1. Ceglia I, Carli M, Baviera M, Renoldi G, Calcagno E, Invernizzi RW. The 5-HT receptor antagonist M100,907 prevents extracellular glutamate rising in response to NMDA receptor blockade in the mPFC. J Neurochem. 2004;91:189–199. doi: 10.1111/j.1471-4159.2004.02704.x.
    1. Choi KH, Zarandi B, Todd KG, Biondo AM, Greenshaw AJ. Effects of AMPA/kainate receptor blockade on responses to dopamine receptor agonists in the core and shell of the rat nucleus accumbens. Psychopharmacology (Berl) 2000;150:102–111. doi: 10.1007/s002130000391.
    1. Chudasama Y, Passetti F, Rhodes SE, Lopian D, Desai A, Robbins TW. Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behav Brain Res. 2003;146:105–119. doi: 10.1016/j.bbr.2003.09.020.
    1. Coutureau E, Killcross S. Inactivation of the infralimbic prefrontal cortex reinstates goal-directed responding in overtrained rats. Behav Brain Res. 2003;146:167–174. doi: 10.1016/j.bbr.2003.09.025.
    1. Cunningham MO, Jones RS. The anticonvulsant, lamotrigine decreases spontaneous glutamate release but increases spontaneous GABA release in the rat entorhinal cortex in vitro. Neuropharmacology. 2000;39:2139–2146. doi: 10.1016/S0028-3908(00)00051-4.
    1. Dalley JW, Theobald DE, Eagle DM, Passetti F, Robbins TW. Deficits in impulse control associated with tonically-elevated serotonergic function in rat prefrontal cortex. Neuropsychopharmacology. 2002;26:716–728. doi: 10.1016/S0893-133X(01)00412-2.
    1. Dalley JW, Fryer TD, Brichard L, Robinson ESJ, Theobald DE, Laane K, Pena Y, Murphy ER, Shah Y, Probst K, Abakumova I, Aigbirhio FI, Richards HK, Hong Y, Baron J-C, Everitt BJ, Robbins TW. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science. 2007;315:1267–1270. doi: 10.1126/science.1137073.
    1. de Wit S, Kosaki Y, Balleine BW, Dickinson A. Dorsomedial prefrontal cortex resolves response conflict in rats. J Neurosci. 2006;26:5224–5229. doi: 10.1523/JNEUROSCI.5175-05.2006.
    1. Everitt BJ, Belin D, Economidou D, Pelloux Y, Dalley JW, Robbins TW. Review. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc Lond B Biol Sci. 2008;363:3125–3135. doi: 10.1098/rstb.2008.0089.
    1. Fuchs RA, Evans KA, Parker MP, See RE. Differential involvement of orbitofrontal cortex subregions in conditioned cue-induced and cocaine-primed reinstatement of cocaine seeking in rats. J Neurosci. 2004;24:6600–6610. doi: 10.1523/JNEUROSCI.1924-04.2004.
    1. Huynh H, Feldt L. Conditions under which mean square ratios in repeated measures designs have exact F-distributions. J Am Stat Assoc. 1970;65:1582–1589. doi: 10.2307/2284340.
    1. Idris NF, Repeto P, Neill JC, Large CH. Investigation of the effects of lamotrigine and clozapine in improving reversal-learning impairments induced by acute phencyclidine and d-amphetamine in the rat. Psychopharmacology (Berl) 2005;179:336–348. doi: 10.1007/s00213-004-2058-5.
    1. Ikeda H, Akiyama G, Fujii Y, Minowa R, Koshikawa N, Cools AR. Role of AMPA and NMDA receptors in the nucleus accumbens shell in turning behaviour of rats: interaction with dopamine receptors. Neuropharmacology. 2003;44:81–87. doi: 10.1016/S0028-3908(02)00334-9.
    1. Konradi C, Heckers S (2003) Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther 97(2):153–179
    1. Koya E, Uejima JL, Wihbey KA, Bossert JM, Hope BT, Shaham Y. Role of ventral medial prefrontal cortex in incubation of cocaine craving. Neuropharmacology. 2009;56(Suppl 1):177–185. doi: 10.1016/j.neuropharm.2008.04.022.
    1. Levene H. Robust tests for the equality of variances. In: Oklin I, editor. Contributions to probability and statistics. Palo Alto: Stanford University Press; 1960.
    1. Lewis D, Moghaddam B. Cognitive dysfunction in schizophrenia: convergence of gamma-aminobutryic acid and glutamate alterations. Arch Neurol. 2006;63:1372–1376. doi: 10.1001/archneur.63.10.1372.
    1. Massieu L, Morales-Villagran A, Tapia R. Accumulation of extracellular glutamate by inhibition of its uptake is not sufficient for inducing neuronal damage: an in vivo microdialysis study. J Neurochem. 1995;64:2262–2272. doi: 10.1046/j.1471-4159.1995.64052262.x.
    1. Matsumoto M, Kanno M, Togashi H, Ueno K, Otani H, Mano Y, Yoshioka M. Involvement of GABAA receptors in the regulation of the prefrontal cortex on dopamine release in the rat dorsolateral striatum. Eur J Pharmacol. 2003;482:177–184. doi: 10.1016/j.ejphar.2003.10.003.
    1. Mauchly J. Significance test of sphericity of a normal n-variate distribution. Ann Math Stat. 1940;11:204–209. doi: 10.1214/aoms/1177731915.
    1. McFarland K, Davidge SB, Lapish CC, Kalivas PW. Limbic and motor circuitry underlying footshock-induced reinstatement of cocaine-seeking behavior. J Neurosci. 2004;24:1551–1560. doi: 10.1523/JNEUROSCI.4177-03.2004.
    1. Moghaddam B, Adams B, Verma A, Daly D. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci. 1997;17:2921–2927.
    1. Murphy ER, Dalley JW, Robbins TW. Local glutamate receptor antagonism in the rat prefrontal cortex disrupts response inhibition in a visuospatial attentional task. Psychopharmacology (Berl) 2005;179:99–107. doi: 10.1007/s00213-004-2068-3.
    1. Nakamura K, Kurasawa M, Shirane M. Impulsivity and AMPA receptors: aniracetam ameliorates impulsive behavior induced by a blockade of AMPA receptors in rats. Brain Res. 2000;862:266–269. doi: 10.1016/S0006-8993(00)02160-0.
    1. Obrenovitch TP, Urenjak J, Zilkha E, Jay TM. Excitotoxicity in neurological disorders—the glutamate paradox. Int J Dev Neurosci. 2000;18(2–3):281–287. doi: 10.1016/S0736-5748(99)00096-9.
    1. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 4. San Diego: Academic Press; 1998.
    1. Robbins TW, Murphy ER. Behavioural pharmacology: 40+ years of progress, with a focus on glutamate receptors and cognition. Trends Pharmacol Sci. 2006;27:141–148. doi: 10.1016/j.tips.2006.01.009.
    1. Schmitt WB, Deacon RM, Seeburg PH, Rawlins JN, Bannerman DM. A within-subjects, within-task demonstration of intact spatial reference memory and impaired spatial working memory in glutamate receptor-A-deficient mice. J Neurosci. 2003;23:3953–3959.
    1. Shannon HE, Love PL. Effects of antiepileptic drugs on attention as assessed by a five-choice serial reaction time task in rats. Epilepsy Behav. 2005;7:620–628. doi: 10.1016/j.yebeh.2005.08.017.
    1. Sheardown MJ, Nielsen EO, Hansen AJ, Jacobsen P, Honore T. 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia. Science. 1990;247:571–574. doi: 10.1126/science.2154034.
    1. Suzuki Y, Jodo E, Takeuchi S, Niwa S, Kayama Y. Acute administration of phencyclidine induces tonic activation of medial prefrontal cortex neurons in freely moving rats. Neuroscience. 2002;114(3):769–779. doi: 10.1016/S0306-4522(02)00298-1.
    1. Winters BD, Bussey TJ. Glutamate receptors in perirhinal cortex mediate encoding, retrieval, and consolidation of object recognition memory. J Neurosci. 2005;25:4243–4251. doi: 10.1523/JNEUROSCI.0480-05.2005.
    1. Yin HH, Knowlton BJ, Balleine BW. Inactivation of dorsolateral striatum enhances sensitivity to changes in the action–outcome contingency in instrumental conditioning. Behav Brain Res. 2006;166:189–196. doi: 10.1016/j.bbr.2005.07.012.

Source: PubMed

Подписаться