Phase 1b trial of anti-VEGF/PDGFR vorolanib combined with immune checkpoint inhibitors in patients with advanced solid tumors

Nusayba A Bagegni, Haeseong Park, Katlyn Kraft, Maura O-Toole, Feng Gao, Saiama N Waqar, Lee Ratner, Daniel Morgensztern, Siddhartha Devarakonda, Manik Amin, Maria Q Baggstrom, Chris Liang, Giovanni Selvaggi, Andrea Wang-Gillam, Nusayba A Bagegni, Haeseong Park, Katlyn Kraft, Maura O-Toole, Feng Gao, Saiama N Waqar, Lee Ratner, Daniel Morgensztern, Siddhartha Devarakonda, Manik Amin, Maria Q Baggstrom, Chris Liang, Giovanni Selvaggi, Andrea Wang-Gillam

Abstract

Purpose: Vorolanib is a multi-target tyrosine kinase inhibitor with anti-angiogenic properties. This study aimed to evaluate the tolerability, safety and efficacy of vorolanib when added to checkpoint inhibitors (CPIs) in patients with advanced solid tumors.

Methods: We conducted a phase 1b study of vorolanib (300 or 400 mg orally once daily) plus pembrolizumab or nivolumab using a standard 3 + 3 design to determine the dose-limiting toxicity (DLT), maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D). The endpoints included safety, toxicity and objective response rate, according to Response Evaluation Criteria in Solid Tumors, version 1.1 (RECIST 1.1).

Results: Sixteen patients (9 in pembrolizumab arm, 7 in nivolumab arm) with gastrointestinal or lung cancers were enrolled. All patients had at least 1 treatment-related adverse event (TRAE). The most common TRAEs across all cohorts were lymphopenia (n = 7), leukopenia (n = 5), fatigue (n = 5), and alanine aminotransferase elevation (n = 5); most toxicities were grade (G) 1-2. DLTs were reported in 3 patients at vorolanib 400 mg dose level, with G3 aspartate aminotransferase elevation, G3 rectal hemorrhage, and G3 rash. Of 13 total response-evaluable patients, 2 patients had confirmed partial responses (1 rectal squamous cell cancer and 1 small cell lung cancer). Two patients achieved prolonged stable disease. Vorolanib 300 mg daily was determined to be the RP2D for either pembrolizumab or nivolumab.

Conclusion: Combination vorolanib 300 mg orally once daily plus CPI appears to be a feasible regimen with manageable toxicity and promising efficacy in select tumor types. NCT03511222. Date of Registration: April 18, 2018.

Keywords: Advanced solid tumors; Checkpoint inhibitors; Immunotherapy; Nivolumab; Pembrolizumab; Vorolanib.

Conflict of interest statement

The following represents disclosure information provided by authors of this manuscript. Saiama N. Waqar reports funding from SWOG-Clinical Trials Partnership for oversight of the Lung-MAP master protocol and sub-study activities as co-Principal Investigator, and serves as Chair of Data Safety Monitoring Board for a Hoosier Cancer Research Network study. On behalf of all authors, the corresponding author states that there is no conflict of interest.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Patient flow diagram
Fig. 2
Fig. 2
Radiographic tumor response and duration of therapy. Spider plot of best overall response. Radiographic response evaluated on the basis of Response Evaluation in Solid Tumors version 1.1 (RECIST v1.1). Each line represents one patient. The dotted lines at + 20% represent cutoffs for progressive disease and at − 30% represent cutoffs for partial response. X82 300 mg: Vorolanib 300 mg. X82 400 mg: Vorolanib 400 mg. Pembro: Pembrolizumab. Nivo: Nivolumab. HCC: Hepatocellular cancer. SCLC: Small cell lung cancer

References

    1. Kato K, Shah MA, Enzinger P. KEYNOTE-590: Phase III study of first-line chemotherapy with or without pembrolizumab for advanced esophageal cancer. Future Oncol. 2019;15(10):1057–1066. doi: 10.2217/fon-2018-0609.
    1. Sun JM, Shen L, Shah MA, et al. Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590): a randomized, placebo-controlled, phase 3 study. Lancet. 2021;398(10302):759–771. doi: 10.1016/S0140-6736(21)01234-4.
    1. Janjigian YY, Shitara K, Moehler M, et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction and oesophageal adenocarcinoma (CheckMate 649): a randomized, open-label, phase 3 trial. Lancet. 2021;398(10294):27–40. doi: 10.1016/S0140-6736(21)00797-2.
    1. Langer CJ, Gadgeel SM, Borghaei H, et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomized, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 2016;17(11):1497–1508. doi: 10.1016/S1470-2045(16)30498-3.
    1. Gandhi L, Rodriguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378:2078–2092. doi: 10.1056/NEJMoa1801005.
    1. Borghaei H, Langer CJ, Gadgeel S, et al. 24-month overall survival from KEYNOTE-021 cohort G: pemetrexed and carboplatin with or without pembrolizumab as first-line therapy for advanced nonsquamous non-small cell lung cancer. J Thorac Oncol. 2019;14(1):124–129. doi: 10.1016/j.jtho.2018.08.004.
    1. Reck M, Rodriguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1 positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–1833. doi: 10.1056/NEJMoa1606774.
    1. Mok TSK, Wu YL, Kudaba I, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomized, open-label, controlled, phase 3 trial. Lancet. 2019;393(10183):1819–1830. doi: 10.1016/S0140-6736(18)32409-7.
    1. Paz-Ares L, Ciuleanu TE, Cobo M, et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): an international, randomized, open-label, phase 3 trial. Lancet Oncol. 2021;22(2):198–211. doi: 10.1016/S1470-2045(20)30641-0.
    1. Chung HC, Piha-Paul SA, Lopez-Martin J, et al. Pembrolizumab after two or more lines of previous therapy in patients with recurrent or metastatic SCLC: results from the KEYNOTE-028 and KEYNOTE-158 studies. J Thorac Oncol. 2020;15(4):618–627. doi: 10.1016/j.jtho.2019.12.109.
    1. Spigel DR, Vicente D, Ciuleanu TE, et al. Second-line nivolumab in relapsed small-cell lung cancer: CheckMate 331. Ann Oncol. 2021;32(5):631–641. doi: 10.1016/j.annonc.2021.01.071.
    1. Owonikoko TK, Park K, Govindan R, et al. Nivolumab and ipilimumab as maintenance therapy in extensive-disease small-cell lung cancer: CheckMate 451. J Clin Oncol. 2021;39(12):1349–1359. doi: 10.1200/JCO.20.02212.
    1. Nivolumab indication in small cell lung cancer withdrawn in U.S. market. 2021. . Accessed 28 May 2021.
    1. Wu X, Giobbie-Hurder A, Liao X, et al. Angiopoietin-2 as a biomarker and target for immune checkpoint therapy. Cancer Immunol Res. 2017;5(1):17–28. doi: 10.1158/2326-6066.CIR-16-0206.
    1. Ohm JE, Carbone DP. VEGF as a mediator of tumor-associated immunodeficiency. Immunol Res. 2001;23(2–3):263–272. doi: 10.1385/IR:23:2-3:263.
    1. Huang H, Langenkamp E, Georganaki M, et al. VEGF suppresses T-lymphocyte infiltration in the tumor microenvironment through inhibition of NF-kappaB-induced endothelial activation. Faseb J. 2015;29(1):227–238. doi: 10.1096/fj.14-250985.
    1. Shrimali RK, Yu Z, Theoret MR, et al. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res. 2010;70(15):6171–6180. doi: 10.1158/0008-5472.CAN-10-0153.
    1. Finn RS, Qin S, Ikeda M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020;382(20):1894–1905. doi: 10.1056/NEJMoa1915745.
    1. Reck M, Mok TSK, Nishio M, et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower 150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomized, open-label phase 3 trial. Lancet Respir Med. 2019;7(5):387–401. doi: 10.1016/S2213-2600(19)30084-0.
    1. Ramucirumab and pembrolizumab versus standard of care in treating patients with stage IV or recurrent non-small cell lung cancer (a Lung-MAP non-match treatment trial), NCT03971474. . Accessed 24 July 2021.
    1. Finn RS, Ikeda M, Zhu A, et al. Phase 1b study of lenvatinib plus pembrolizumab in patients with unresectable hepatocellular carcinoma. J Clin Oncol. 2020;38(26):2960–2970. doi: 10.1200/JCO.20.00808.
    1. Safety and efficacy of lenvatinib (E7080/MK-7902) in combination with pembrolizumab (MK-3475) versus lenvatinib as first-line therapy in participants with advanced hepatocellular carcinoma (MK-7902-002/E7080-G000-311/LEAP-002), NCT03713593. . Accessed 2 June 2021.
    1. Motzer R, Alekseev B, Rha SY, et al. Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. N Engl J Med. 2021;384(14):1289–1300. doi: 10.1056/NEJMoa2035716.
    1. Neubert NJ, Schmittnaegel M, Bordry N, et al. T cell-induced CSF1 promotes melanoma resistance to PD1 blockade. Sci Transl Med. 2018;10(436):e3311. doi: 10.1126/scitranslmed.aan3311.
    1. Cannarile MA, Weisser M, Jacob W, et al. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 2017;5(1):53. doi: 10.1186/s40425-017-0257-y.
    1. Razak A, Cleary JM, Moreno V, et al. Safety and efficacy of AMG 820, an anti-colony-stimulating factor 1 receptor antibody, in combination with pembrolizumab in adults with advanced solid tumors. J Immunother Cancer. 2020;8(2):e001006. doi: 10.1136/jitc-2020-001006.
    1. Xun Q, Wang Z, Hu X, et al. Small-molecule CSF1R inhibitors as anticancer agents. Curr Med Chem. 2020;27(23):3944–3966. doi: 10.2174/1573394715666190618121649.
    1. Bendell C, Patel MR, Moore KN, et al. Phase I, first-in-human, dose-escalation study to evaluate the safety, tolerability, and pharmacokinetics of vorolanib in patients with advanced solid tumors. Oncologist. 2019;24(4):455. doi: 10.1634/theoncologist.2018-0740.
    1. Song Y, Wang J, Ren X, et al. Vorolanib, an oral VEGFR/PDGFR dual tyrosine kinase inhibitor for treatment of patients with advanced solid tumors: an open-label, phase I dose escalation and dose expansion trial. Chin J Cancer Res. 2021;33(1):103–114. doi: 10.21147/j.issn.1000-9604.2021.01.11.
    1. Sheng X, Yan X, Chi Z, et al. Phase 1 trial of vorolanib (CM082) in combination with everolimus in patients with advanced clear-cell renal cell carcinoma. EBioMedicine. 2020;55:102755. doi: 10.1016/j.ebiom.2020.102755.
    1. Pedersen KS, Grierson PM, Picus J, et al. Vorolanib (X-82), an oral anti-VEGFR/PDGFR/CSF1R tyrosine kinase inhibitor, with everolimus in solid tumors: results of phase I study. Invest New Drugs. 2021 doi: 10.1007/s10637-021-01093-7.
    1. Sheng X, Ye D, Zhou AP, et al. Vorolanib, everolimus, and the combination in patients with pretreated metastatic renal cell carcinoma (CONCEPT study): a randomized, phase 3, double-blind, multicenter trial. J of Clin Oncol. 2021;29(15):4512. doi: 10.1200/JCO.2021.39.15_suppl.4512.
    1. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) Eur J Cancer. 2009;45(2):228–247. doi: 10.1016/j.ejca.2008.10.026.
    1. . Accessed 24 July 2021.
    1. National Cancer Institute Cancer Therapy Evaluation Program (NCI CTEP) Common Terminology Criteria for Adverse Events (CTCAE) version 5 (). . Accessed 24 July 2021.
    1. Phase I/II study to evaluate the safety and preliminary activity of nivolumab in combination with vorolanib in patients with refractory thoracic tumors, NCT03583086. . Accessed 10 Apr 2021.
    1. Ventola CL. Cancer immunotherapy, Part 3: challenges and future trends. P T. 2017;42(8):514–521.
    1. Fukumura D, Kloepper J, Amoozgar Z. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol. 2018;15(5):325–340. doi: 10.1038/nrclinonc.2018.29.
    1. Kato Y, Tabata K, Kimura T, et al. Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway. PLoS ONE. 2019;14(2):e0212513. doi: 10.1371/journal.pone.0212513.
    1. Lee EY, Kulkarni RP. Circulating biomarkers predictive of tumor response to cancer immunotherapy. Expert Rev Mol Diagn. 2019;19(10):895–904. doi: 10.1080/14737159.2019.1659728.
    1. Zhang M, Yang J, Hua W, et al. Monitoring checkpoint inhibitors: predictive biomarkers in immunotherapy. Front Med. 2019;13(1):32–44. doi: 10.1007/s11684-018-0678-0.

Source: PubMed

Подписаться