Impaired cerebrovascular autoregulation in patients with severe sepsis and sepsis-associated delirium

Patrick Schramm, Klaus Ulrich Klein, Lena Falkenberg, Manfred Berres, Dorothea Closhen, Konrad J Werhahn, Matthias David, Christian Werner, Kristin Engelhard, Patrick Schramm, Klaus Ulrich Klein, Lena Falkenberg, Manfred Berres, Dorothea Closhen, Konrad J Werhahn, Matthias David, Christian Werner, Kristin Engelhard

Abstract

Introduction: Sepsis-associated delirium (SAD) increases morbidity in septic patients and, therefore, factors contributing to SAD should be further characterized. One possible mechanism might be the impairment of cerebrovascular autoregulation (AR) by sepsis, leading to cerebral hypo- or hyperperfusion in these haemodynamically unstable patients. Therefore, the present study investigates the relationship between the incidence of SAD and the status of AR during sepsis.

Methods: Cerebral blood flow velocity was measured using transcranial Doppler sonography and was correlated with the invasive arterial blood pressure curve to calculate the index of AR Mx (Mx>0.3 indicates impaired AR). Mx was measured daily during the first 4 days of sepsis. Diagnosis of a SAD was performed using the confusion assessment method for ICU (CAM-ICU) and, furthermore the predominant brain electrical activity in electroencephalogram (EEG) both at day 4 after reduction of sedation to RASS >-2.

Results: 30 critically ill adult patients with severe sepsis or septic shock (APACHE II 32 ± 6) were included. AR was impaired at day 1 in 60%, day 2 in 59%, day 3 in 41% and day 4 in 46% of patients; SAD detected by CAM-ICU was present in 76 % of patients. Impaired AR at day 1 was associated with the incidence of SAD at day 4 (p = 0.035).

Conclusions: AR is impaired in the great majority of patients with severe sepsis during the first two days. Impaired AR is associated with SAD, suggesting that dysfunction of AR is one of the trigger mechanisms contributing to the development of SAD.

Trial registration: clinicalTrials.gov ID NCT01029080.

Figures

Figure 1
Figure 1
Mean cerebrovascular autoregulation index (Mx) of all patients during the time of the investigation. Values above the horizontal line at 0.3 indicate impaired cerebrovascular autoregulation. The lines show mean and first SD.
Figure 2
Figure 2
Cerebrovascular autoregulation index (Mx) during the time of investigation. Mx values for patients with (upper half) and without (lower half) sepsis-associated delirium (SAD) diagnosed using the confusion assessment method for the ICU (CAM-ICU). Values above the horizontal line at 0.3 indicate impaired cerebrovascular autoregulation.

References

    1. Shehabi Y, Riker RR, Bokesch PM, Wisemandle W, Shintani A, Ely EW. Delirium duration and mortality in lightly sedated, mechanically ventilated intensive care patients. Crit Care Med. 2010;16:2311–2318. doi: 10.1097/CCM.0b013e3181f85759.
    1. Ebersoldt M, Sharshar T, Annane D. Sepsis-associated delirium. Intensive Care Medicine. 2007;16:941–950. doi: 10.1007/s00134-007-0622-2.
    1. Cerejeira J, Firmino H, Vaz-Serra A, Mukaetova-Ladinska EB. The neuroinflammatory hypothesis of delirium. Acta Neuropathol. 2010;16:737–754. doi: 10.1007/s00401-010-0674-1.
    1. Iacobone E, Bailly-Salin J, Polito A, Friedman D, Stevens RD, Sharshar T. Sepsis-associated encephalopathy and its differential diagnosis. Crit Care Med. 2009;16:S331–336.
    1. Sharshar T, Carlier R, Bernard F, Guidoux C, Brouland JP, Nardi O, de la Grandmaison GL, Aboab J, Gray F, Menon D, Annane D. Brain lesions in septic shock: a magnetic resonance imaging study. Intensive Care Med. 2007;16:798–806. doi: 10.1007/s00134-007-0598-y.
    1. Taccone FS, Su F, Pierrakos C, He X, James S, Dewitte O, Vincent J-L, De Backer D. Cerebral microcirculation is impaired during sepsis: an experimental study. Crit Care. 2010;16:R140. doi: 10.1186/cc9205.
    1. Semmler A, Hermann S, Mormann F, Weberpals M, Paxian SA, Okulla T, Schafers M, Kummer MP, Klockgether T, Heneka MT. Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism. J Neuroinflammation. 2008;16:38. doi: 10.1186/1742-2094-5-38.
    1. Terborg C, Schummer W, Albrecht M, Reinhart K, Weiller C, Rother J. Dysfunction of vasomotor reactivity in severe sepsis and septic shock. Intensive Care Med. 2001;16:1231–1234. doi: 10.1007/s001340101005.
    1. Sharshar T, Annane D, de la Grandmaison GL, Brouland JP, Hopkinson NS, Francoise G. The neuropathology of septic shock. Brain Pathol. 2004;16:21–33.
    1. Pfister D, Siegemund M, Dell-Kuster S, Smielewski P, Rüegg S, Strebel SP, Marsch SC, Pargger H, Steiner LA. Cerebral perfusion in sepsis-associated delirium. Crit Care. 2008;16:R63. doi: 10.1186/cc6891.
    1. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med. 2003;16:530–538.
    1. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med. 2008;16:17–60. doi: 10.1007/s00134-007-0934-2.
    1. Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD. Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996;16:1829–1834. doi: 10.1161/01.STR.27.10.1829.
    1. Sorrentino E, Budohoski KP, Kasprowicz M, Smielewski P, Matta B, Pickard JD, Czosnyka M. Critical thresholds for transcranial Doppler indices of cerebral autoregulation in traumatic brain injury. Neurocrit Care. 2011;16:188–193. doi: 10.1007/s12028-010-9492-5.
    1. Plaschke K, von Haken R, Scholz M, Engelhardt R, Brobeil A, Martin E, Weigand MA. Comparison of the confusion assessment method for the intensive care unit (CAM-ICU) with the Intensive Care Delirium Screening Checklist (ICDSC) for delirium in critical care patients gives high agreement rate(s) Intensive Care Med. 2008;16:431–436. doi: 10.1007/s00134-007-0920-8.
    1. Young GB, Bolton CF, Archibald YM, Austin TW, Wells GA. The electroencephalogram in sepsis-associated encephalopathy. J Clin Neurophysiol. 1992;16:145–152. doi: 10.1097/00004691-199201000-00016.
    1. Steiner LA, Pfister D, Strebel SP, Radolovich D, Smielewski P, Czosnyka M. Near-Infrared Spectroscopy can Monitor Dynamic Cerebral Autoregulation in Adults. Neurocrit Care. 2009;16:122–128. doi: 10.1007/s12028-008-9140-5.
    1. Czosnyka M, Brady K, Reinhard M, Smielewski P, Steiner LA. Monitoring of Cerebrovascular Autoregulation: Facts, Myths, and Missing Links. Neurocrit Care. 2009;16:373–386. doi: 10.1007/s12028-008-9175-7.
    1. Schramm P, Klein KU, Pape M, Berres M, Werner C, Kochs E, Engelhard K. Serial measurement of static and dynamic cerebrovascular autoregulation after brain injury. J Neurosurg Anesthesiol. 2011;16:41–44. doi: 10.1097/ANA.0b013e3181f35854.
    1. Thees C, Kaiser M, Scholz M, Semmler A, Heneka MT, Baumgarten G, Hoeft A, Putensen C. Cerebral haemodynamics and carbon dioxide reactivity during sepsis syndrome. Crit Care. 2007;16:R123. doi: 10.1186/cc6185.
    1. Szatmari S, Vegh T, Csomos A, Hallay J, Takacs I, Molnar C, Fulesdi B. Impaired cerebrovascular reactivity in sepsis-associated encephalopathy studied by acetazolamide test. Crit Care. 2010;16:R50. doi: 10.1186/cc8939.
    1. Hofer S, Bopp C, Hoerner C, Plaschke K, Faden RM, Martin E, Bardenheuer HJ, Weigand MA. Injury of the blood brain barrier and up-regulation of icam-1 in polymicrobial sepsis. J Surg Res. 2008;16:276–281. doi: 10.1016/j.jss.2007.07.021.
    1. Papadopoulos MC, Davies DC, Moss RF, Tighe D, Bennett ED. Pathophysiology of septic encephalopathy: a review. Crit Care Med. 2000;16:3019–3024. doi: 10.1097/00003246-200008000-00057.
    1. Engelhard K, Werner C, Möllenberg O, Kochs E. S(+)-ketamine/propofol maintain dynamic cerebrovascular autoregulation in humans. Can J Anaesth. 2001;16:1034–1039. doi: 10.1007/BF03016597.
    1. Engelhard K, Werner C, Mollenberg O, Kochs E. Effects of remifentanil/propofol in comparison with isoflurane on dynamic cerebrovascular autoregulation in humans. Acta Anaesthesiol Scand. 2001;16:971–976. doi: 10.1034/j.1399-6576.2001.450809.x.
    1. Ogawa Y, Iwasaki K-I, Aoki K, Gokan D, Hirose N, Kato J, Ogawa S. The different effects of midazolam and propofol sedation on dynamic cerebral autoregulation. Anesth Analg. 2010;16:1279–1284. doi: 10.1213/ANE.0b013e3181f42fc0.
    1. Piechnik SK, Yang X, Czosnyka M, Smielewski P, Fletcher SH, Jones AL, Pickard JD. The continuous assessment of cerebrovascular reactivity: a validation of the method in healthy volunteers. Anesth Analg. 1999;16:944–949.
    1. Cremer OL, Diephuis JC, van Soest H, Vaessen PH, Bruens MG, Hennis PJ, Kalkman CJ. Cerebral oxygen extraction and autoregulation during extracorporeal whole body hyperthermia in humans. Anesthesiology. 2004;16:1101–1107. doi: 10.1097/00000542-200405000-00011.

Source: PubMed

Подписаться