Comparative study of intrathecal dexmedetomidine with intrathecal magnesium sulfate used as adjuvants to bupivacaine

Deepika Shukla, Anil Verma, Apurva Agarwal, H D Pandey, Chitra Tyagi, Deepika Shukla, Anil Verma, Apurva Agarwal, H D Pandey, Chitra Tyagi

Abstract

Background: No drug, used as adjuvant to spinal bupivacaine, has yet been identified that specifically inhibits nociception without its associated side-effects.

Aims: This prospective randomized double-blind study was conducted to evaluate the onset and duration of sensory and motor block as well as perioperative analgesia and adverse effects of dexmedetomidine and magnesium sulfate given intrathecally with 0.5% hyperbaric bupivacaine for spinal anesthesia.

Materials and methods: A total of 90 patients classified as American Society of Anesthesiologists status I and II scheduled for lower abdominal and lower limb procedures were prospectively studied. Patients were randomly allocated to receive intrathecally either 15 mg hyperbaric bupivacaine plus 0.1 ml (10 μg) dexmedetomidine (group D, n=30) or 15 mg hyperbaric bupivacaine plus 0.1 ml (50 mg) magnesium sulfate (group M, n=30) or 15 mg hyperbaric bupivacaine plus 0.1 ml saline (group C, n=30) as control. The onset time to reach peak sensory and motor level, the regression time for sensory and motor block, hemodynamic changes and side-effects were recorded.

Statistical analysis used: All statistical analyses were performed using INSTAT for windows. Continuous variables were tested for normal distribution by the Kolmogorov-Smirnov test. Data was expressed as either mean and standard deviation or numbers and percentages. Continuous covariates (age, body mass index and height) were compared using analysis of variance (ANOVA). For the times to reach T10 dermatomes, Bromage 3 scale and the regression of the sensory block to S1 dermatome and Bromage scale 0, one-way ANOVA was used to compare the means. The level of significance used was P<0.05.

Results: The onset times to reach T10 dermatome and to reach peak sensory level as well as onset time to reach modified Bromage 3 motor block were significantly different in the three groups. The onset time to reach peak sensory and motor level was shorter in group D as compared with the control group C, and it was significantly prolonged in group M. We also found that patients in group D had significant longer sensory and motor block times than patients in group M, which was greater than in the control group C.

Conclusion: It was found that onset of anesthesia was rapid and of prolonged duration in the dexmedetomidine group (D). However, in the magnesium sulfate group (M), although onset of block was delayed, the duration was significantly prolonged as compared with the control group (C), but to a lesser degree than in the dexmedetomidine group (D). The groups were similar with respect to hemodynamic variables and there were no significant side-effects in either of the groups.

Keywords: Bupivacaine; dexmedetomidine; lower abdominal surgery; magnesium sulfate; spinal anesthesia lower limb surgery.

Conflict of interest statement

Conflict of Interest: None declared.

Figures

Figure 1
Figure 1
Patient characteristics in the three groups. Data are given as mean (SD)

References

    1. Venn RM, Grounds RM. Comparison between dexmedetomidine and propofol for sedation in the intensive care unit: Patient and clinician perceptions. Br J Anaesth. 2001;87:684–90.
    1. Kalso E, Poyhia R, Rosemberg P. Spinal antinociceptive by dexmedetomidine, a highly selective 2-adrenergic agonist. Pharmacol Toxicol. 1991;68:140–3.
    1. Savola M, Woodley J, Kending J, Maze M. Alpha2B adrenoreceptor activation inhibits nociceptor response in the spinal cord of the neonatal rat. Eur J Pharmacol. 1990;183:740.
    1. Kanazi GE, Aouad MT, Jabbour-Khoury SI, Al Jazzar MD, Alameddine MM, Al-Yaman R, et al. Effect of lowdose dexmedetomidine or clonidine on the characteristics of bupivacaine spinal block. Acta Anesthesiol Scand. 2006;50:222–7.
    1. Tramer MR, Schneider J, Marti RA, Rifat K. Role of magnesium sulfate in postoperative analgesia. Anesthesiology. 1996;84:340–7.
    1. Woolf CJ, Thompson WN. The induction and maintenance of central sensitization is dependent on N-methyl-d-aspartate acid receptor activation: Implications for the treatment of post-injury pain hypersensitivity states. Pain. 1991;44:293–9.
    1. Ko SH, Lim HR, Kim DC, Han YJ, Choe H, Song HS. Magnesium sulphate does not reduce postoperative analgesic requirements. Anesthesiology. 2001;95:640–6.
    1. Kroin JS, McCarthy RJ, Von Roenn N, Schwab B, Tuman KJ, Ivankovich AD. Magnesium sulfate potentiates morphine antinociception at the spinal level. Anesth Analg. 2000;90:913–7.
    1. Buvanendran A, McCarthy RJ, Kroin JS, Leong W, Perry P, Tuman KJ. Intrathecal magnesium prolongs fentanyl analgesia: A prospective, randomized, controlled trial. Anesth Analg. 2002;95:661–6.
    1. Arcioni R, Palmisani S, Santorsola C, Sauli V, Romano S, Mercieri M, et al. Combined intrathecal and epidural magnesium sulfate supplementation of spinal anesthesia to reduce post-operative analgesic requirements: A prospective, randomized, double-blind, controlled trial in patients undergoing major orthopedic surgery. Acta Anaesthesiol Scand. 2007;51:482–9.
    1. Ozalevli M, Cetin TO, Unlugence H, Guler T, Isik G. The effect of adding intrathecal magnesium sulphate to bupivacaine fentanyl spinal anaesthesia. Acta Anaesthesiol Scand. 2005;49:1514–9.
    1. Bromage PR. A comparison of the hydrochloride and carbon dioxide salts of lidocaine and prilocaine in epidural analgesia. Acta Anesthesiol Scand Suppl. 1965;16:55–69.
    1. Martin E, Ramsay G, Mantz J, Sum-Ping ST. The role of the alpha2-adrenreceptor agonist dexmedetomidine in post-surgical sedation in the intensive care unit. J Intensive Care Med. 2000;18:29–34.
    1. Post C, Gordh T, Minor G, Archer T, Freedman J. Antinociceptive effects and spinal cord tissue concentrations after intrathecal injection of guanfacine or clonidine into rats. Anesth Analg. 1987;66:317–24.
    1. Smith MS, Schumbra UB, Wilson KH, Page SO, Hulette C, Light AR, et al. Alpha 2 adrenergic receptor in human spinal cord: Specific localized expression of mRNA encoding alpha-2 adrenergic receptor subtypes at four distinct levels. Brain Res Mol Brain Res. 1995;34:109–17.
    1. Smith C, Birnbaum G, Carter JL, Greenstein J, Lublin FD. Tizanidine treatment of spasticity caused by multiple sclerosis: results of a double-blind, placebo-controlled trial. US Tizanidine Study Group. Neurology. 1994;44:34–43.
    1. Yaksh TL, Reddy SV. Studies in primate on the analgesic effects associated with intrathecal actions of opiates, alpha-adrenergic agonists, and baclofen. Anesthesiology. 1981;54:451–67.
    1. Al-Mustafa MM, Abu-Halaweh SA, Aloweidi AS, Murshidi MM, Ammari BA, Awwad ZM, et al. Effect of dexmedetomidine added to spinal bupivacaine for urological procedures. Saudi Med J. 2009;30:365–70.
    1. Al-Ghanem SM, Massad IM, Al-Mustafa MM, Al-Zaben KR, Qudaisat IY, Qatawneh AM, et al. Effect of adding dexmedetomidine versus fentanyl to intrathecal bupivacaine on spinal block characteristics in gynaecological procedures-a double blind controlled study. Am J Applied Sci. 2009;6:882–7.
    1. Malleeswaran S, Panda N, Mathew P, Bagga R. Magnesium as an intrathecal adjuvant in mild pre-ecclampsia. Int J Obstet Anesth. 2010;19:161–6.
    1. Ishizaki K, Sasaki M, Karasawa S, Obata H, Nara T, Goto F. The effect of intrathecal magnesium sulfate on the nociception in rats acute pain models. Anesthesia. 1999;54:241–6.
    1. Liu HT, Hollmann MW, Liu WH, Hoenemann CW, Durieux ME. Modulation of NMDA receptor function by ketamin and magnesium: Part 1. Anesth Analg. 2001;92:1173–81.
    1. Pockett S. Spinal cord synaptic plasticity and chronic pain. Anesth Analg. 1995;80:173–9.
    1. Fawcett VY, Haxby EJ, Male DA. Magnesium; physiology and pharmacology. Br J Anaesth. 1999;83:302–20.

Source: PubMed

Подписаться