COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options

Tomasz J Guzik, Saidi A Mohiddin, Anthony Dimarco, Vimal Patel, Kostas Savvatis, Federica M Marelli-Berg, Meena S Madhur, Maciej Tomaszewski, Pasquale Maffia, Fulvio D'Acquisto, Stuart A Nicklin, Ali J Marian, Ryszard Nosalski, Eleanor C Murray, Bartlomiej Guzik, Colin Berry, Rhian M Touyz, Reinhold Kreutz, Dao Wen Wang, David Bhella, Orlando Sagliocco, Filippo Crea, Emma C Thomson, Iain B McInnes, Tomasz J Guzik, Saidi A Mohiddin, Anthony Dimarco, Vimal Patel, Kostas Savvatis, Federica M Marelli-Berg, Meena S Madhur, Maciej Tomaszewski, Pasquale Maffia, Fulvio D'Acquisto, Stuart A Nicklin, Ali J Marian, Ryszard Nosalski, Eleanor C Murray, Bartlomiej Guzik, Colin Berry, Rhian M Touyz, Reinhold Kreutz, Dao Wen Wang, David Bhella, Orlando Sagliocco, Filippo Crea, Emma C Thomson, Iain B McInnes

Abstract

The novel coronavirus disease (COVID-19) outbreak, caused by SARS-CoV-2, represents the greatest medical challenge in decades. We provide a comprehensive review of the clinical course of COVID-19, its comorbidities, and mechanistic considerations for future therapies. While COVID-19 primarily affects the lungs, causing interstitial pneumonitis and severe acute respiratory distress syndrome (ARDS), it also affects multiple organs, particularly the cardiovascular system. Risk of severe infection and mortality increase with advancing age and male sex. Mortality is increased by comorbidities: cardiovascular disease, hypertension, diabetes, chronic pulmonary disease, and cancer. The most common complications include arrhythmia (atrial fibrillation, ventricular tachyarrhythmia, and ventricular fibrillation), cardiac injury [elevated highly sensitive troponin I (hs-cTnI) and creatine kinase (CK) levels], fulminant myocarditis, heart failure, pulmonary embolism, and disseminated intravascular coagulation (DIC). Mechanistically, SARS-CoV-2, following proteolytic cleavage of its S protein by a serine protease, binds to the transmembrane angiotensin-converting enzyme 2 (ACE2) -a homologue of ACE-to enter type 2 pneumocytes, macrophages, perivascular pericytes, and cardiomyocytes. This may lead to myocardial dysfunction and damage, endothelial dysfunction, microvascular dysfunction, plaque instability, and myocardial infarction (MI). While ACE2 is essential for viral invasion, there is no evidence that ACE inhibitors or angiotensin receptor blockers (ARBs) worsen prognosis. Hence, patients should not discontinue their use. Moreover, renin-angiotensin-aldosterone system (RAAS) inhibitors might be beneficial in COVID-19. Initial immune and inflammatory responses induce a severe cytokine storm [interleukin (IL)-6, IL-7, IL-22, IL-17, etc.] during the rapid progression phase of COVID-19. Early evaluation and continued monitoring of cardiac damage (cTnI and NT-proBNP) and coagulation (D-dimer) after hospitalization may identify patients with cardiac injury and predict COVID-19 complications. Preventive measures (social distancing and social isolation) also increase cardiovascular risk. Cardiovascular considerations of therapies currently used, including remdesivir, chloroquine, hydroxychloroquine, tocilizumab, ribavirin, interferons, and lopinavir/ritonavir, as well as experimental therapies, such as human recombinant ACE2 (rhACE2), are discussed.

Keywords: ACE2; Acute coronary syndrome; COVID-19; Cardiac; Endothelium; Microvascular; Myocardial infarction; Myocarditis; Vascular; Virus.

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2020. For permissions, please email: journals.permissions@oup.com.

Figures

Figure 1
Figure 1
Characteristic structure of betacoronavirus. Negative stain electron microscopy showing a betacoronavirus particles with club-shaped surface projections surrounding the periphery of the particle, a characteristic feature of coronaviruses. The photograph depicts a murine coronavirus. Kindly provided by Professor David Bhella, Scottish Centre for Macromolecular Imaging; MRC Centre for Virus Research; University of Glasgow.
Figure 2
Figure 2
Basic pathobiology of SARS-CoV-2 infection and possible treatment strategies. Upon the viral spike protein priming by the transmembrane protease serine 2 (TMPRSS2), SARS-CoV-2 uses the host angiotensin-converting enzyme 2 (ACE2) to enter and infect the cell. Inhibiting TMPRSS2 activity (by camostat mesylate) could be used to prevent proteolytic cleavage of the SARS-CoV-2 spike protein and protect the cell against virus–cell fusion (1). Another approach could be neutralizing the virus from entering cells and keeping it in solution by activation of a disintegrin and metalloprotease 17 (ADMA17) which leads to shedding of the membrane-bound ACE2 and release of the soluble extracellular domain of ACE2 (2); with treatment with anti-ACE2 antibodies leading to blockage of the interaction between virus and receptors (3) or administration of soluble recombinant human ACE2 protein acting as a competitive interceptor for SARS-CoV-2 (4). Alternatively, purified polyclonal antibodies targeting/neutralizing the viral spike protein may offer some protection against SARS-CoV-2 (5). Interestingly, angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs), frequently used to treat hypertension, could alter ACE2 expression and intensify the SARS-CoV-2 infection.
Figure 3
Figure 3
Key symptoms, and biochemical and radiological features of the clinical course of COVID-19.
Figure 4
Figure 4
Multifocal pneumonia in a patient with COVID-19. (A) A cross-sectional CT image of the lungs showing two distinct pulmonary infiltrates in the left upper lobe (arrows). (B) A large posteriorly located right lower lobe infiltrate on CT scan of the chest (arrows). Data were collected as part of a retrospective study, consent was waived, and collection of these data was approved by local ethics committee of Wuhan, China. Kindly provided by Professor Dao Wen Wang.
Figure 5
Figure 5
Cardiovascular involvement in COVID-19—key manifestations and hypothetical mechanisms. SARS-CoV-2 anchors on transmembrane ACE2 to enter the host cells including type 2 pneumocytes, macrophages, endothelial cells, pericytes, and cardiac myocytes, leading to inflammation and multiorgan failure. In particular, the infection of endothelial cells or pericytes could lead to severe microvascular and macrovascular dysfunction. Furthermore, in conjunction with the immune over-reactivity, it can potentially destabilize atherosclerotic plaques and explain the development of the acute coronary syndromes. Infection of the respiratory tract, particularly of type 2 pneumocytes, by SARS-CoV-2 is manifested by the progression of systemic inflammation and immune cell overactivation, leading to a ‘cytokine storm’, which results in an elevated level of cytokines such as IL-6, IL-7, IL-22, and CXCL10. Subsequently, it is possible that activated T cells and macrophages may infiltrate infected myocardium, resulting in the development of fulminant myocarditis and severe cardiac damage. This process could be further intensified by the cytokine storm. Similarly, the viral invasion could cause cardiac myocyte damage directly leading to myocardial dysfunction and contribute to the development of arrhythmia.
Figure 6
Figure 6
Representative transthoracic echocardiography frames (selected from cine loop images) from a patient with COVID-19. (A) Apical four-chamber view showing globally reduced left ventricular contraction, especially in the apical segment. The right ventricle is dilated and an echo-free space, indicating pericardial effusion, is present. (B) Parasternal short axis view showing markedly reduced left ventricular contraction, enlarged right ventricle, and a mural thrombosis in the right ventricle outflow tract. (C) Two-dimensional speckle tracking echocardiography based on speckle tracking imaging technology (2D STE). Left panel showing a normal 2D STE, right showing a 2D STE from a patient with COVID-19 and myocarditis, depicting reduced regional peak systolic strain rates. Data were collected as part of a retrospective study, Wuhan, China; consent was waived and collection of these data was approved by the local ethics committee. Kindly provided by Professor Dao Wen Wang.

References

    1. Dong E, Du H, Gardner L.. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 2020;doi: 10.1016/S1473-3099(20)30120-1.
    1. John Hopkins University. (28 March 2020).
    1. Ruan Q, Yang K, Wang W, Jiang L, Song J.. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020;doi: 10.1007/s00134-020-05991-x.
    1. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, Tai Y, Bai C, Gao T, Song J, Xia P, Dong J, Zhao J, Wang FS.. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020;8:420–422.
    1. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, Gong W, Liu X, Liang J, Zhao Q, Huang H, Yang B, Huang C.. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol 2020;doi: 10.1001/jamacardio.2020.0950.
    1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B.. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497–506.
    1. Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. [The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China]. Zhonghua Liu Xing Bing Xue Za Zhi 2020;41:145–151.
    1. Driggin E, Madhavan MV, Bikdeli B, Chuich T, Laracy J, Bondi-Zoccai G, Brown TS, Nigoghossian C, Zidar DA, Haythe J, Brodie D, Beckman JA, Kirtane AJ, Stone GW, Krumholz HM, Parikh SA.. Cardiovascular considerations for patients, health care workers, and health systems during the coronavirus disease 2019 (COVID-19) pandemic. J Am Coll Cardiol 2020;doi: 10.1016/j.jacc.2020.03.031.
    1. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL.. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579:270–273.
    1. Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F.. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov 2020;6:14.
    1. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS.. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367:1260–1263.
    1. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N,, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Muller MA, Drosten C, Pohlmann S.. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;doi: 10.1016/j.cell.2020.02.052.
    1. Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, Lou Y, Gao D, Yang L, He D, Wang MH.. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreak. Int J Infect Dis 2020;92:214–217.
    1. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, Tamin A, Harcourt JL, Thornburg NJ, Gerber SI, Lloyd-Smith JO, de Wit E, Munster VJ.. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 2020;382:1564–1567.
    1. Liu Y, Yan LM, Wan L, Xiang TX, Le A, Liu JM, Peiris M, Poon LLM, Zhang W.. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis 2020;doi: 10.1016/S1473-3099(20)30232-2.
    1. Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, Bucci E, Piacentini M, Ippolito G, Melino G.. COVID-19 infection: the perspectives on immune responses. Cell Death Differ 2020;doi: 10.1038/s41418-020-0530-3.
    1. Bairey Merz CN, Pepine CJ, Shimokawa H, Berry C.. Treatment of coronary microvascular dysfunction. Cardiovasc Res 2020;116:856–870.
    1. Liu K, Fang YY, Deng Y, Liu W, Wang MF, Ma JP, Xiao W, Wang YN, Zhong MH, Li CH, Li GC, Liu HG.. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J (Engl) 2020; doi: 0.1097/CM9.0000000000000744.
    1. Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda M, Nagata N.. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J Virol 2019;93:e01815–18.
    1. Zhou Y, Vedantham P, Lu K, Agudelo J, Carrion R Jr, Nunneley JW, Barnard D, Pohlmann S, McKerrow JH, Renslo AR, Simmons G.. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res 2015;116:76–84.
    1. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z.. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020;doi: 10.1001/jama.2020.1585.
    1. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY,, Xiang J,, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J,, Ye CJ, Zhu SY, Zhong NS, China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;doi: 10.1056/NEJMoa2002032.
    1. National Health Commission of the People’s Republic of China. Chinese Clinical Guidance for COVID-19 Pneumonia Diagnosis and Treatment (7th edition)..
    1. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, Azman AS, Reich NG, Lessler J.. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med 2020; doi: 10.7326/M20-0504.
    1. Zhou C, Gao C, Xie Y, Xu M.. COVID-19 with spontaneous pneumomediastinum. Lancet Infect Dis 2020;20:510.
    1. Sun R, Liu H, Wang X.. Mediastinal emphysema, giant bulla, and pneumothorax developed during the course of COVID-19 pneumonia. Korean J Radiol 2020;doi: 10.3348/kjr.2020.018.
    1. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, Cereda D, Coluccello A, Foti G, Fumagalli R, Iotti G, Latronico N, Lorini L, Merler S, Natalini G, Piatti A, Ranieri MV, Scandroglio AM, Storti E, Cecconi M, Pesenti A, COVID-19 Lombardy ICU Network. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA 2020;doi: 10.1001/jama.2020.5394.
    1. Epidemiology Working Group for NCIP Epidemic Response. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Chin J Epidemiol 2020;41:145–151.
    1. The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19)—China, 2020. China CDC Weekly 2020;2:x.
    1. Ruan S. Likelihood of survival of coronavirus disease 2019. Lancet Infect Dis 2020;doi: 10.1016/S1473-3099(20)30257-7.
    1. Beaney T, Burrell LM, Castillo RR, Charchar FJ, Cro S, Damasceno A, Kruger R, Nilsson PM,, Prabhakaran D, Ramirez AJ, Schlaich MP, Schutte AE, Tomaszewski M, Touyz R, Wang JG, Weber MA, Poulter NR, May Measurement Month Investigators. May Measurement Month 2018: a pragmatic global screening campaign to raise awareness of blood pressure by the International Society of Hypertension. Eur Heart J 2019;40:2006–2017.
    1. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B.. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054–1062.
    1. Kreutz R, Algharably E, Azizi M, Dobrowolski P, Guzik T, Januszewicz A, Persu A, Prejbisz A, Riemer T, Wang J, Burnier M.. Hypertension, the renin–angiotensin system, and the risk of lower respiratory tract infections and lung injury: implications for COVID-19. European Society of Hypertension COVID-19 Task Force Review of Evidence. Cardiovasc Res 2020;116:1688–1699.
    1. Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD.. Renin–angiotensin–aldosterone system inhibitors in patients with Covid-19. N Engl J Med 2020; doi: 10.1056/NEJMsr2005760.
    1. Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, Diz DI, Gallagher PE.. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation 2005;111:2605–2610.
    1. Danser AHJ, Epstein M, Batlle D.. Renin–angiotensin system blockers and the COVID-19 oandemic: at present there is no evidence to abandon renin–angiotensin system blockers. Hypertension 2020:HYPERTENSIONAHA12015082.
    1. Sun ML, Yang JM, Sun YP, Su GH.. [Inhibitors of RAS might be a good choice for the therapy of COVID-19 pneumonia]. Zhonghua Jie He He Hu Xi Za Zhi 2020;43:219–222.
    1. Chen DJ, Li X, Song PS, Hu CJ, Su F, Dai J.. Hypokalemia and clinical implications in patients with coronavirus disease 2019 (COVID-19). medRxiv 2020;doi: .
    1. Drummond G, Vinh A, Guzik T, Sobey CG.. Immune mechanisms of hypertension. Nat Rev Immunol 2019;19:517–532.
    1. Loperena R, Van Beusecum JP, Itani HA, Engel N, Laroumanie F, Xiao L, Elijovich F, Laffer CL, Gnecco JS, Noonan J, Maffia P, Jasiewicz-Honkisz B, Czesnikiewicz-Guzik M, Mikolajczyk T, Sliwa T, Dikalov S, Weyand CM, Guzik TJ, Harrison DG.. Hypertension and increased endothelial mechanical stretch promote monocyte differentiation and activation: roles of STAT3, interleukin 6 and hydrogen peroxide. Cardiovasc Res 2018;114:1547–1563.
    1. Siedlinski M,, Jozefczuk E, Xu X, Teumer A, Evangelou E, Schnabel RB, Welsh P, Maffia P, Erdmann J, Tomaszewski M, Caulfield MJ, Sattar N, Holmes MV, Guzik TJ.. White blood cells and blood pressure: a Mendelian randomization study. Circulation 2020;doi: 10.1161/CIRCULATIONAHA.119.045102.
    1. Youn JC, Yu HT, Lim BJ, Koh MJ, Lee J,, Chang DY, Choi YS, Lee SH, Kang SM,, Jang Y, Yoo OJ, Shin EC, Park S.. Immunosenescent CD8+ T cells and C-X-C chemokine receptor type 3 chemokines are increased in human hypertension. Hypertension 2013;62:126–133.
    1. Zheng YY, Ma YT, Zhang JY, Xie X.. COVID-19 and the cardiovascular system. Nat Rev Cardiol 2020;doi: 10.1038/s41569-020-0360-5.
    1. Lippi G, Lavie CJ, Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): evidence from a meta-analysis. Prog Cardiovasc Dis 2020;doi: 10.1016/j.pcad.2020.03.001.
    1. Gualandro DM, Puelacher C, LuratiBuse G, Lampart A, Strunz C, Cardozo FA, Yu PC, Jaffe AS, Barac S, Bock L, Badertscher P, du Fay de Lavallaz J, Marbot S, Sazgary L, Bolliger D, Rentsch K, Twerenbold R, Hammerer-Lercher A, Melo ES, Calderaro D, Duarte AJ, de Luccia N, Caramelli B, Mueller C, TropoVasc and BASEL-PMI Investigators. Comparison of high-sensitivity cardiac troponin I and T for the prediction of cardiac complications after non-cardiac surgery. Am Heart J 2018;203:67–73.
    1. Chen C, Zhou Y, Wang DW.. SARS-CoV-2: a potential novel etiology of fulminant myocarditis. Herz 2020;doi: 10.1007/s00059-020-04909-z.
    1. Chen L, Li X, Chen M, Feng Y, Xiong C.. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res 2020;116:1097–1100.
    1. Inciardi RM, Lupi L, Zaccone G, Italia L, Raffo M, Tomasoni D, Cani DS, Cerini M, Farina D, Gavazzi E, Maroldi R, Adamo M, Ammirati E, Sinagra G, Lombardi CM, Metra M.. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020;doi: 10.1001/jamacardio.2020.1096.
    1. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L.. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395:507–513.
    1. Gallagher S, Jones DA, Anand V, Mohiddin S.. Diagnosis and management of patients with acute cardiac symptoms, troponin elevation and culprit-free angiograms. Heart 2012;98:974–981.
    1. Kindermann I, Barth C, Mahfoud F, Ukena C, Lenski M, Yilmaz A, Klingel K, Kandolf R, Sechtem U, Cooper LT, Bohm M.. Update on myocarditis. J Am Coll Cardiol 2012;59:779–792.
    1. Pankuweit S, Moll R, Baandrup U, Portig I, Hufnagel G, Maisch B.. Prevalence of the parvovirus B19 genome in endomyocardial biopsy specimens. Hum Pathol 2003;34:497–503.
    1. Kuhl U, Pauschinger M, Seeberg B, Lassner D, Noutsias M, Poller W, Schultheiss HP.. Viral persistence in the myocardium is associated with progressive cardiac dysfunction. Circulation 2005;112:1965–1970.
    1. Blyszczuk P. Myocarditis in humans and in experimental animal models. Front Cardiovasc Med 2019;6:64.
    1. Gangaplara A, Massilamany C, Brown DM, Delhon G, Pattnaik AK, Chapman N, Rose N, Steffen D, Reddy J.. Coxsackievirus B3 infection leads to the generation of cardiac myosin heavy chain-alpha-reactive CD4 T cells in A/J mice. Clin Immunol 2012;144:237–249.
    1. Myers JM, Cooper LT, Kem DC, Stavrakis S, Kosanke SD, Shevach EM, Fairweather D, Stoner JA, Cox CJ, Cunningham MW.. Cardiac myosin–Th17 responses promote heart failure in human myocarditis. JCI Insight 2016;1:doi: 10.1172/jci.insight.85851.
    1. Musher DM, Abers MS, Corrales-Medina VF.. Acute infection and myocardial infarction. N Engl J Med 2019;380:171–176.
    1. Cole JE, Park I, Ahern DJ, Kassiteridi C, Danso Abeam D, Goddard ME, Green P, Maffia P, Monaco C.. Immune cell census in murine atherosclerosis: cytometry by time of flight illuminates vascular myeloid cell diversity. Cardiovasc Res 2018;114:1360–1371.
    1. Steven S, Dib M, Hausding M, Kashani F, Oelze M, Kroller-Schon S, Hanf A, Daub S, Roohani S, Gramlich Y, Lutgens E, Schulz E, Becker C, Lackner KJ, Kleinert H, Knosalla C, Niesler B, Wild PS, Munzel T, Daiber A.. CD40L controls obesity-associated vascular inflammation, oxidative stress, and endothelial dysfunction in high fat diet-treated and db/db mice. Cardiovasc Res 2018;114:312–323.
    1. Kusters PJH, Lutgens E, Seijkens TTP.. Exploring immune checkpoints as potential therapeutic targets in atherosclerosis. Cardiovasc Res 2018;114:368–377.
    1. Peiris JS, Chu CM, Cheng VC, Chan KS, Hung IF, Poon LL, Law KI, Tang BS, Hon TY, Chan CS, Chan KH, Ng JS, Zheng BJ, Ng WL, Lai RW, Guan Y, Yuen KY, HKU/UCH SARS Study Group. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 2003;361:1767–1772.
    1. Levy BI, Heusch G, Camici PG.. The many faces of myocardial ischaemia and angina. Cardiovasc Res 2019;115:1460–1470.
    1. Carnevale D, Wenzel P.. Mechanical stretch on endothelial cells interconnects innate and adaptive immune response in hypertension. Cardiovasc Res 2018;114:1432–1434.
    1. Petrie JR, Guzik TJ, Touyz RM.. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can J Cardiol 2018;34:575–584.
    1. Wilk G, Osmenda G, Matusik P, Nowakowski D, Jasiewicz-Honkisz B, Ignacak A, Czesnikiewicz-Guzik M, Guzik TJ.. Endothelial function assessment in atherosclerosis: comparison of brachial artery flowmediated vasodilation and peripheral arterial tonometry. Pol Arch Med Wewn 2013;123:443–452.
    1. Tang N, Li D, Wang X, Sun Z.. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020;18:844–847.
    1. Danzi GB, Loffi M, Galeazzi G, Gherbesi E.. Acute pulmonary embolism and COVID-19 pneumonia: a random association? Eur Heart J 2020;doi: 10.1093/eurheartj/ehaa254.
    1. Ketelhuth DFJ, Lutgens E, Back M, Binder CJ, Van den Bossche J, Daniel C, Dumitriu IE, Hoefer I, Libby P, O’Neill L, Weber C, Evans PC.. Immunometabolism and atherosclerosis: perspectives and clinical significance: a position paper from the Working Group on Atherosclerosis and Vascular Biology of the European Society of Cardiology. Cardiovasc Res 2019;115:1385–1392.
    1. Ketelhuth DFJ. The immunometabolic role of indoleamine 2,3-dioxygenase in atherosclerotic cardiovascular disease: immune homeostatic mechanisms in the artery wall. Cardiovasc Res 2019;115:1408–1415.
    1. Le RQ, Li L, Yuan W, Shord SS, Nie L, Habtemariam BA, Przepiorka D, Farrell AT, Pazdur R.. FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. Oncologist 2018;23:943–947.
    1. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, HLH Across Speciality Collaboration UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020;395:1033–1034.
    1. Gast M, Rauch BH, Nakagawa S, Haghikia A, Jasina A, Haas J, Nath N, Jensen L, Stroux A, Bohm A, Friebel J, Rauch U, Skurk C, Blankenberg S, Zeller T, Prasanth KV, Meder B, Kuss A, Landmesser U, Poller W.. Immune system-mediated atherosclerosis caused by deficiency of long non-coding RNA MALAT1 in ApoE–/– mice. Cardiovasc Res 2019;115:302–314.
    1. Gast M, Rauch BH, Haghikia A, Nakagawa S, Haas J, Stroux A, Schmidt D, Schumann P, Weiss S, Jensen L, Kratzer A, Kraenkel N, Muller C, Bornigen D, Hirose T, Blankenberg S, Escher F, Kuhl AA, Kuss AW, Meder B, Landmesser U, Zeller T, Poller W.. Long noncoding RNA NEAT1 modulates immune cell functions and is suppressed in early onset myocardial infarction patients. Cardiovasc Res 2019;115:1886–1906.
    1. van Koeverden ID, de Bakker M, Haitjema S, van der Laan SW, de Vries JPM, Hoefer IE, de Borst GJ, Pasterkamp G, den Ruijter HM.. Testosterone to oestradiol ratio reflects systemic and plaque inflammation and predicts future cardiovascular events in men with severe atherosclerosis. Cardiovasc Res 2019;115:453–462.
    1. Penson P, Long DL, Howard G, Howard VJ, Jones SR, Martin SS, Mikhailidis DP, Muntner P, Rizzo M, Rader DJ, Safford MM, Sahebkar A, Toth PP, Banach M.. Associations between cardiovascular disease, cancer, and very low high-density lipoprotein cholesterol in the REasons for Geographical and Racial Differences in Stroke (REGARDS) study. Cardiovasc Res 2019;115:204–212.
    1. Crnko S, Ernens I, Van Laake LW.. New dimensions in circadian clock function: the role of biological sex. Cardiovasc Res 2018;114:203–204.
    1. Ziegler L, Gajulapuri A, Frumento P, Bonomi A, Wallen H, de Faire U, Rose-John S, Gigante B.. Interleukin 6 trans-signalling and risk of future cardiovascular events. Cardiovasc Res 2019;115:213–221.
    1. Hofmann P, Sommer J, Theodorou K, Kirchhof L, Fischer A, Li Y, Perisic L, Hedin U, Maegdefessel L, Dimmeler S, Boon RA.. Long non-coding RNA H19 regulates endothelial cell aging via inhibition of STAT3 signalling. Cardiovasc Res 2019;115:230–242.
    1. Ferrante G, Condorelli G.. Interleukin-6 trans-signalling and risk of future cardiovascular events: a new avenue for atheroprotection? Cardiovasc Res 2019;115:8–9.
    1. Smolen JS, Landewe R, Bijlsma J, Burmester G, Chatzidionysiou K, Dougados M, Nam J, Ramiro S, Voshaar M, van Vollenhoven R, Aletaha D, Aringer M, Boers M, Buckley CD, Buttgereit F, Bykerk V, Cardiel M, Combe B, Cutolo M, van Eijk-Hustings Y, Emery P, Finckh A, Gabay C, Gomez-Reino J, Gossec L, Gottenberg JE, Hazes JMW, Huizinga T, Jani M, Karateev D, Kouloumas M, Kvien T, Li Z, Mariette X, McInnes I, Mysler E, Nash P, Pavelka K, Poor G, Richez C, van Riel P, Rubbert-Roth A, Saag K, da Silva J, Stamm T, Takeuchi T, Westhovens R, de Wit M, van der Heijde D.. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann Rheum Dis 2017;76:960–977.
    1. Kishimoto T. Discovery of IL-6 and development of anti-IL-6R antibody. Keio J Med 2019;68:96.
    1. The Chinese National Health Commission. Chinese Clinical Guidance for COVID-19 Pneumonia Diagnosis and Treatment–American College of Cardiology. 2020.
    1. Jamal FA, Khaled SK.. The cardiovascular complications of chimeric antigen receptor T cell therapy. Curr Hematol Malig Rep 2020;doi: 10.1007/s11899-020-00567-4.
    1. Wang HX, Li WJ, Hou CL, Lai S, Zhang YL, Tian C, Yang H, Du J, Li HH.. CD1d-dependent natural killer T cells attenuate angiotensin II-induced cardiac remodeling via IL-10 signaling in mice. Cardiovasc Res 2018;115:83–93.
    1. van der Heijden C, Deinum J, Joosten LAB, Netea MG, Riksen NP.. The mineralocorticoid receptor as a modulator of innate immunity and atherosclerosis. Cardiovasc Res 2018;114:944–953.
    1. Brauner S, Jiang X, Thorlacius GE, Lundberg AM, Ostberg T, Yan ZQ, Kuchroo VK, Hansson GK, Wahren-Herlenius M.. Augmented Th17 differentiation in Trim21 deficiency promotes a stable phenotype of atherosclerotic plaques with high collagen content. Cardiovasc Res 2018;114:158–167.
    1. Chou CH, Hung CS, Liao CW, Wei LH, Chen CW, Shun CT, Wen WF, Wan CH, Wu XM, Chang YY, Wu VC, Wu KD, Lin YH, TAIPAI Study Group. IL-6 trans-signalling contributes to aldosterone-induced cardiac fibrosis. Cardiovasc Res 2018;114:690–702.
    1. Watson C, Whittaker S, Smith N, Vora AJ, Dumonde DC, Brown KA.. IL-6 acts on endothelial cells to preferentially increase their adherence for lymphocytes. Clin Exp Immunol 1996;105:112–119.
    1. van Tits LJ, Stienstra R, van Lent PL, Netea MG, Joosten LA, Stalenhoef AF.. Oxidized LDL enhances pro-inflammatory responses of alternatively activated M2 macrophages: a crucial role for Kruppel-like factor 2. Atherosclerosis 2011;214:345–349.
    1. Sukovich DA, Kauser K, Shirley FD, DelVecchio V, Halks-Miller M, Rubanyi GM.. Expression of interleukin-6 in atherosclerotic lesions of male ApoE-knockout mice: inhibition by 17beta-estradiol. Arterioscler Thromb Vasc Biol 1998;18:1498–1505.
    1. Huber SA, Sakkinen P, Conze D, Hardin N, Tracy R.. Interleukin-6 exacerbates early atherosclerosis in mice. Arterioscler Thromb Vasc Biol 1999;19:2364–2367.
    1. Schuett H, Oestreich R, Waetzig GH, Annema W, Luchtefeld M, Hillmer A, Bavendiek U, von Felden J, Divchev D, Kempf T, Wollert KC, Seegert D, Rose-John S, Tietge UJ, Schieffer B, Grote K.. Transsignaling of interleukin-6 crucially contributes to atherosclerosis in mice. Arterioscler Thromb Vasc Biol 2012;32:281–290.
    1. Nishihara M, Aoki H, Ohno S, Furusho A, Hirakata S, Nishida N, Ito S, Hayashi M, Imaizumi T, Fukumoto Y.. The role of IL-6 in pathogenesis of abdominal aortic aneurysm in mice. PLoS One 2017;12:e0185923.
    1. Schieffer B, Selle T, Hilfiker A, Hilfiker-Kleiner D, Grote K, Tietge UJ, Trautwein C, Luchtefeld M, Schmittkamp C, Heeneman S, Daemen MJ, Drexler H.. Impact of interleukin-6 on plaque development and morphology in experimental atherosclerosis. Circulation 2004;110:3493–3500.
    1. Tamura Y, Phan C, Tu L, Le Hiress M, Thuillet R, Jutant EM, Fadel E, Savale L, Huertas A, Humbert M, Guignabert C.. Ectopic upregulation of membrane-bound IL6R drives vascular remodeling in pulmonary arterial hypertension. J Clin Invest 2018;128:1956–1970.
    1. Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium, Swerdlow DI, Holmes MV, Kuchenbaecker KB, Engmann JE, Shah T, Sofat R, Guo Y, Chung C, Peasey A, Pfister R, Mooijaart SP, Ireland HA, Leusink M, Langenberg C,, Li KW, Palmen J, Howard P, Cooper JA, Drenos F, Hardy J, Nalls MA, Li YR, Lowe G, Stewart M, Bielinski SJ, Peto J, Timpson NJ, Gallacher J, Dunlop M, Houlston R,, Tomlinson I, Tzoulaki I, Luan J, Boer JM, Forouhi NG, Onland-Moret NC, van der Schouw YT, Schnabel RB, Hubacek JA, Kubinova R, Baceviciene M, Tamosiunas A, Pajak A, Topor-Madry R, Malyutina S, Baldassarre D, Sennblad B, Tremoli E, de Faire U, Ferrucci L, Bandenelli S, Tanaka T,, Meschia JF, Singleton A, Navis G, Mateo Leach I, Bakker SJ, Gansevoort RT, Ford I, Epstein SE, Burnett MS, Devaney JM, Jukema JW, Westendorp RG, Jan de Borst G, van der Graaf Y, de Jong PA, Mailand-van der Zee AH, Klungel OH, de Boer A, Doevendans PA, Stephens JW, Eaton CB, Robinson JG, Manson JE, Fowkes FG, Frayling TM, Price JF,, Whincup PH, Morris RW, Lawlor DA, Smith GD, Ben-Shlomo Y,, Redline S, Lange LA, Kumari M, Wareham NJ, Verschuren WM, Benjamin EJ,, Whittaker JC, Hamsten A, Dudbridge F, Delaney JA, Wong A, Kuh D, Hardy R, Castillo BA, Connolly JJ, van der Harst P, Brunner EJ,, Marmot MG, Wassel CL, Humphries SE, Talmud PJ, Kivimaki M, Asselbergs FW, Voevoda M, Bobak M, Pikhart H, Wilson JG, Hakonarson H, Reiner AP, Keating BJ, Sattar N, Hingorani AD, Casas JP.. The interleukin-6 receptor as a target for prevention of coronary heart disease: a Mendelian randomisation analysis. Lancet 2012;379:1214–1224.
    1. Sarwar N, Butterworth AS, Freitag DF, Gregson J, Willeit P, Gorman DN, Gao P,, Saleheen D, Rendon A, Nelson CP, Braund PS, Hall AS, Chasman DI, Tybjaerg-Hansen A, Chambers JC, Benjamin EJ,, Franks PW, Clarke R, Wilde AA, Trip MD, Steri M, Witteman JC, Qi L, van der Schoot CE, de Faire U, Erdmann J,, Stringham HM, Koenig W, Rader DJ, Melzer D, Reich D, Psaty BM, Kleber ME, Panagiotakos DB, Willeit J, Wennberg P,, Woodward M, Adamovic S, Rimm EB,, Meade TW, Gillum RF, Shaffer JA,, Hofman A, Onat A,, Sundstrom J, Wassertheil-Smoller S, Mellstrom D, Gallacher J,, Cushman M, Tracy RP, Kauhanen J, Karlsson M, Salonen JT,, Wilhelmsen L, Amouyel P, Cantin B, Best LG, Ben-Shlomo Y, Manson JE, Davey-Smith G, de Bakker PI, O’Donnell CJ, Wilson JF,, Wilson AG, Assimes TL, Jansson JO, Ohlsson C, Tivesten A, Ljunggren O, Reilly MP, Hamsten A, Ingelsson E, Cambien F, Hung J,, Thomas GN, Boehnke M, Schunkert H, Asselbergs FW, Kastelein JJ, Gudnason V, Salomaa V, Harris TB, Kooner JS, Allin KH, Nordestgaard BG, Hopewell JC, Goodall AH, Ridker PM, Holm H, Watkins H, Ouwehand WH, Samani NJ, Kaptoge S, Di Angelantonio E, Harari O, Danesh J.. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet 2012;379:1205–1213.
    1. Maffia P, Guzik TJ.. When, where, and how to target vascular inflammation in the post-CANTOS era? Eur Heart J 2019;40:2492–2494.
    1. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M.. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003;426:450–454.
    1. Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F.. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol 2010;84:12658–12664.
    1. Raj VS, Mou H, Smits SL, Dekkers DHW, Müller MA, Dijkman R, Muth D, Demmers JAA, Zaki A, Fouchier RAM, Thiel V, Drosten C, Rottier PJM, Osterhaus ADME, Bosch BJ, Haagmans BL.. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013;495:251–254.
    1. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, Huan Y, Yang P, Zhang Y, Deng W, Bao L, Zhang B, Liu G, Wang Z, Chappell M, Liu Y, Zheng D, Leibbrandt A, Wada T, Slutsky AS, Liu D, Qin C, Jiang C, Penninger JM.. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nature Med 2005;11:875–879.
    1. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Yang P, Sarao R, Wada T, Leong-Poi H, Crackower MA, Fukamizu A, Hui CC, Hein L, Uhlig S, Slutsky AS, Jiang C, Penninger JM.. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005;436:112–116.
    1. de Lang A, Osterhaus AD, Haagmans BL.. Interferon-gamma and interleukin-4 downregulate expression of the SARS coronavirus receptor ACE2 in Vero E6 cells. Virology 2006;353:474–481.
    1. Zulli A, Burrell LM, Widdop RE, Black MJ, Buxton BF, Hare DL.. Immunolocalization of ACE2 and AT2 receptors in rabbit atherosclerotic plaques. J Histochem Cytochem 2006;54:147–150.
    1. Thatcher SE, Gupte M, Hatch N, Cassis LA.. Deficiency of ACE2 in bone-marrow-derived cells increases expression of TNF-alpha in adipose stromal cells and augments glucose intolerance in obese C57BL/6 mice. Int J Hypertens 2012;2012:762094.
    1. Li SS, Cheng CW, Fu CL, Chan YH, Lee MP, Chan JW, Yiu SF.. Left ventricular performance in patients with severe acute respiratory syndrome: a 30-day echocardiographic follow-up study. Circulation 2003;108:1798–1803.
    1. Yu CM, Wong RS, Wu EB, Kong SL, Wong J, Yip GW, Soo YO, Chiu ML, Chan YS, Hui D, Lee N, Wu A, Leung CB, Sung JJ.. Cardiovascular complications of severe acute respiratory syndrome. Postgrad Med J 2006;82:140–144.
    1. Oudit GY, Kassiri Z, Jiang C, Liu PP,, Poutanen SM, Penninger JM, Butany J.. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest 2009;39:618–625.
    1. Touyz RM, Alves-Lopes R, Rios FJ, Camargo LL, Anagnostopoulou A, Arner A, Montezano AC.. Vascular smooth muscle contraction in hypertension. Cardiovasc Res 2018;114:529–539.
    1. Lacolley P, Regnault V, Avolio AP.. Smooth muscle cell and arterial aging: basic and clinical aspects. Cardiovasc Res 2018;114:513–528.
    1. Burrell LM, Risvanis J, Kubota E, Dean RG, MacDonald PS,, Lu S, Tikellis C, Grant SL, Lew RA, Smith AI, Cooper ME, Johnston CI.. Myocardial infarction increases ACE2 expression in rat and humans. Eur Heart J 2005;26:369–375.
    1. Zhao YX, Yin HQ, Yu QT, Qiao Y, Dai HY, Zhang MX, Zhang L, Liu YF, Wang LC, Liu DS, Deng BP, Zhang YH, Pan CM, Song HD, Qu X, Jiang H, Liu CX, Lu XT, Liu B, Gao F, Dong B.. ACE2 overexpression ameliorates left ventricular remodeling and dysfunction in a rat model of myocardial infarction. Hum Gene Ther 2010;21:1545–1554.
    1. SIAARTI, Società Italiana di Anestesia Analgesia Rianimazione e Terapia Intensiva. Percorso assistenziale per il paziente affetto da COVID-19. 2020. (4 April 2020).
    1. Yang W, Cao Q, Qin L, Wang X, Cheng Z, Pan A, Dai J, Sun Q, Zhao F, Qu J, Yan F.. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): a multi-center study in Wenzhou city, Zhejiang, China. J Infect 2020;80:388–393.
    1. Geng L, Wang W, Chen Y, Cao J, Lu L, Chen Q, He R, Shen W.. Elevation of ADAM10, ADAM17, MMP-2 and MMP-9 expression with media degeneration features CaCl2-induced thoracic aortic aneurysm in a rat model. Exp Mol Pathol 2010;89:72–81.
    1. Nakkazi E. Randomised controlled trial begins for Ebola therapeutics. Lancet 2018;392:2338.
    1. Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, Li Y, Hu Z, Zhong W, Wang M.. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov 2020;6:16.
    1. Bettadapura J, Herrero LJ, Taylor A, Mahalingam S.. Approaches to the treatment of disease induced by chikungunya virus. Indian J Med Res 2013;138:762–765.
    1. Kuhl U, Lassner D, von Schlippenbach J, Poller W, Schultheiss HP.. Interferon-Beta improves survival in enterovirus-associated cardiomyopathy. J Am Coll Cardiol 2012;60:1295–1296.
    1. Maisch B, Alter P.. Treatment options in myocarditis and inflammatory cardiomyopathy: focus on i.v. immunoglobulins. Herz 2018;43:423–430.
    1. Chatre C, Roubille F, Vernhet H, Jorgensen C, Pers YM.. Cardiac complications attributed to chloroquine and hydroxychloroquine: a systematic review of the literature. Drug Saf 2018;41:919–931.
    1. Gabay C, Riek M, Hetland ML, Hauge EM, Pavelka K, Tomsic M, Canhao H, Chatzidionysiou K, Lukina G, Nordstrom DC, Lie E, Ancuta I, Hernandez MV, van Riel PL, van Vollenhoven R, Kvien TK.. Effectiveness of tocilizumab with and without synthetic disease-modifying antirheumatic drugs in rheumatoid arthritis: results from a European collaborative study. Ann Rheum Dis 2016;75:1336–1342.
    1. Giles JT, Sattar N, Gabriel S, Ridker PM, Gay S, Warne C, Musselman D, Brockwell L, Shittu E, Klearman M, Fleming TR.. Cardiovascular safety of tocilizumab versus etanercept in rheumatoid arthritis: a randomized controlled trial. Arthritis Rheumatol 2020;72:31–40.
    1. Zuo H, Li R, Ma F, Jiang J, Miao K, Li H, Nagel E, Tadic M, Wang H, Wang DW.. Temporal echocardiography findings in patients with fulminant myocarditis: beyond ejection fraction decline. Front Med 2019;doi: 10.1007/s11684-019-0713-9.
    1. Vergano M, Bertolini G, Giannini A, Gristina G, Livigni S, Mistraletti G, Petrini F.. Clinical Ethics Recommendations for the Allocation of Intensive Care Treatments, in Exceptional, Resource-Limited Circumstances. Società Italiana di Anestesia Analgesia Rianimazione e Terapia Intensiva.
    1. Frederix I, Caiani EG, Dendale P, Anker S, Bax J, Bohm A, Cowie M, Crawford J, de Groot N, Dilaveris P, Hansen T, Koehler F, Krstacic G, Lambrinou E, Lancellotti P, Meier P, Neubeck L, Parati G, Piotrowicz E, Tubaro M, van der Velde E.. ESC e-Cardiology Working Group Position Paper: overcoming challenges in digital health implementation in cardiovascular medicine. Eur J Prev Cardiol 2019;26:1166–1177.
    1. Cacioppo JT, Hawkley LC.. Perceived social isolation and cognition. Trends Cogn Sci 2009;13:447–454.
    1. Liu Y, Lv L, Wang L, Zhong Y.. Social isolation induces Rac1-dependent forgetting of social memory. Cell Rep 2018;25:288–295.
    1. Matthews GA, Nieh EH, Vander Weele CM, Halbert SA, Pradhan RV, Yosafat AS, Glober GF, Izadmehr EM, Thomas RE, Lacy GD, Wildes CP, Ungless MA, Tye KM.. Dorsal Raphe dopamine neurons represent the experience of social isolation. Cell 2016;164:617–631.
    1. Jaremka LM, Peng J, Bornstein R, Alfano CM, Andridge RR, Povoski SP, Lipari AM, Agnese DM, Farrar WB, Yee LD, Carson WE 3rd, Kiecolt-Glaser JK.. Cognitive problems among breast cancer survivors: loneliness enhances risk. Psychooncology 2014;23:1356–1364.
    1. Ellwardt L, Aartsen M, Deeg D, Steverink N.. Does loneliness mediate the relation between social support and cognitive functioning in later life? Soc Sci Med 2013;98:116–124.
    1. Nonogaki K, Nozue K, Oka Y.. Social isolation affects the development of obesity and type 2 diabetes in mice. Endocrinology 2007;148:4658–166.
    1. Volden PA, Wonder EL, Skor MN, Carmean CM, Patel FN, Ye H, Kocherginsky M, McClintock MK, Brady MJ, Conzen SD.. Chronic social isolation is associated with metabolic gene expression changes specific to mammary adipose tissue. Cancer Prev Res (Phila) 2013;6:634–645.
    1. Whisman MA. Loneliness and the metabolic syndrome in a population-based sample of middle-aged and older adults. Health Psychol 2010;29:550–554.
    1. Jaremka LM, Fagundes CP, Peng J, Belury MA, Andridge RR, Malarkey WB, Kiecolt-Glaser JK.. Loneliness predicts postprandial ghrelin and hunger in women. Horm Behav 2015;70:57–63.
    1. Budiu RA,, Vlad AM, Nazario L, Bathula C, Cooper KL, Edmed J, Thaker PH, Urban J, Kalinski P, Lee AV, Elishaev EL, Conrads TP, Flint MS.. Restraint and social isolation stressors differentially regulate adaptive immunity and tumor angiogenesis in a breast cancer mouse model. Cancer Clin Oncol 2017;6:12–24.
    1. Lutgendorf SK, DeGeest K, Dahmoush L, Farley D, Penedo F, Bender D, Goodheart M, Buekers TE, Mendez L, Krueger G, Clevenger L, Lubaroff DM, Sood AK, Cole SW.. Social isolation is associated with elevated tumor norepinephrine in ovarian carcinoma patients. Brain Behav Immun 2011;25:250–255.
    1. Hawkley LC, Cacioppo JT.. Loneliness and pathways to disease. Brain Behav Immun 2003;17 Suppl 1:S98–105.
    1. Pyter LM, Yang L,, McKenzie C, da Rocha JM, Carter CS, Cheng B, Engeland CG.. Contrasting mechanisms by which social isolation and restraint impair healing in male mice. Stress 2014;17:256–265.
    1. Jaremka LM, Fagundes CP, Glaser R, Bennett JM, Malarkey WB, Kiecolt-Glaser JK.. Loneliness predicts pain, depression, and fatigue: understanding the role of immune dysregulation. Psychoneuroendocrinology 2013;38:1310–1317.
    1. Steptoe A, Kivimaki M.. Stress and cardiovascular disease: an update on current knowledge. Annu Rev Public Health 2013;34:337–54.
    1. Leigh-Hunt N, Bagguley D, Bash K, Turner V, Turnbull S, Valtorta N, Caan W.. An overview of systematic reviews on the public health consequences of social isolation and loneliness. Public Health 2017;152:157–171.
    1. Heidari Gorji MA, Fatahian A, Farsavian A.. The impact of perceived and objective social isolation on hospital readmission in patients with heart failure: a systematic review and meta-analysis of observational studies. Gen Hosp Psychiatry 2019;60:27–36.
    1. Pantell M, Rehkopf D, Jutte D, Syme SL, Balmes J, Adler N.. Social isolation: a predictor of mortality comparable to traditional clinical risk factors. Am J Public Health 2013;103:2056–2062.
    1. Thurston RC, Kubzansky LD.. Women, loneliness, and incident coronary heart disease. Psychosom Med 2009;71:836–842.
    1. Dennis J, Sealock J, Levinson RT, Farber-Eger E, Franco J, Fong S, Straub P, Hucks D, Song WL, Linton MF, Fontanillas P, Elson SL, Ruderfer D, Abdellaoui A, Sanchez-Roige S, Palmer AA, Boomsma DI, Cox NJ, Chen G, Mosley JD, Wells QS, Davis LK.. Genetic risk for major depressive disorder and loneliness in sex-specific associations with coronary artery disease. Mol Psychiatry 2019;doi: 10.1038/s41380-019-0614-y.
    1. Xia N, Li H.. Loneliness, social isolation, and cardiovascular health. Antioxid Redox Signal 2018;28:837–851.
    1. Vigorito C, Giallauria F.. Loneliness, social isolation and risk of cardiovascular disease in the English Longitudinal Study of Ageing. Eur J Prev Cardiol 2018;25:1384–1386.
    1. Rozanski A, Blumenthal JA, Kaplan J.. Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. Circulation 1999;99:2192–217.
    1. Knox SS, Uvnas-Moberg K.. Social isolation and cardiovascular disease: an atherosclerotic pathway? Psychoneuroendocrinology 1998;23:877–890.
    1. Valtorta NK, Kanaan M, Gilbody S, Ronzi S, Hanratty B.. Loneliness and social isolation as risk factors for coronary heart disease and stroke: systematic review and meta-analysis of longitudinal observational studies. Heart 2016;102:1009–1016.
    1. Hakulinen C, Pulkki-Raback L, Virtanen M, Jokela M, Kivimaki M, Elovainio M.. Social isolation and loneliness as risk factors for myocardial infarction, stroke and mortality: UK Biobank cohort study of 479 054 men and women. Heart 2018;104:1536–1542.
    1. Koss KJ, Hostinar CE, Donzella B, Gunnar MR.. Social deprivation and the HPA axis in early development. Psychoneuroendocrinology 2014;50:1–13.
    1. Cacioppo JT, Cacioppo S, Capitanio JP, Cole SW.. The neuroendocrinology of social isolation. Annu Rev Psychol 2015;66:733–767.
    1. Stafford M, Gardner M, Kumari M, Kuh D, Ben-Shlomo Y.. Social isolation and diurnal cortisol patterns in an ageing cohort. Psychoneuroendocrinology 2013;38:2737–2745.
    1. Hawkley LC, Cole SW, Capitanio JP, Norman GJ, Cacioppo JT.. Effects of social isolation on glucocorticoid regulation in social mammals. Horm Behav 2012;62:314–323.
    1. Lewis R, Wilkins B, Benjamin B, Curtis JT.. Cardiovascular control is associated with pair-bond success in male prairie voles. 2017;208:93–102.
    1. Custaud MA, Belin de Chantemele E, Larina IM, Nichiporuk IA, Grigoriev A, Duvareille M, Gharib C, Gauquelin-Koch G.. Hormonal changes during long-term isolation. Eur J Appl Physiol 2004;91:508–515.
    1. Lyons DM, Ha CM, Levine S.. Social effects and circadian rhythms in squirrel monkey pituitary–adrenal activity. Horm Behav 1995;29:177–190.
    1. Vaernes RJ, Bergan T, Warncke M, Ursin H, Aakvaag A, Hockey R.. European isolation and confinement study. Workload and stress: effects on psychosomatic and psychobiological reaction patterns. Adv Space Biol Med 1993;3:95–120.
    1. Murray DR, Haselton MG, Fales M, Cole SW.. Subjective social status and inflammatory gene expression. Health Psychol 2019;38:182–186.
    1. Mumtaz F, Khan MI, Zubair M, Dehpour AR.. Neurobiology and consequences of social isolation stress in animal model—a comprehensive review. Biomed Pharmacother 2018;105:1205–1222.
    1. Kamal A, Ramakers GM, Altinbilek B, Kas MJ.. Social isolation stress reduces hippocampal long-term potentiation: effect of animal strain and involvement of glucocorticoid receptors. Neuroscience 2014;256:262–270.
    1. Barik J, Marti F, Morel C, Fernandez SP, Lanteri C, Godeheu G, Tassin JP, Mombereau C, Faure P, Tronche F.. Chronic stress triggers social aversion via glucocorticoid receptor in dopaminoceptive neurons. Science 2013;339:332–335.
    1. Skulstad H, Cosyns B, Popescu BA,, Galderisi M, Salvo GD, Donal E, Petersen S, Gimelli A, Haugaa KH, Muraru D, Almeida AG, Schulz-Menger J, Dweck MR, Pontone G, Sade LE, Gerber B, Maurovich-Horvat P, Bharucha T, Cameli M, Magne J, Westwood M, Maurer G, Edvardsen T.. COVID-19 pandemic and cardiac imaging: EACVI recommendations on precautions, indications, prioritization, and protection for patients and healthcare personnel. Eur Heart J Cardiovasc Imaging 2020;doi: 10.1093/ehjci/jeaa072.
    1. Richardson S, Hirsch JS, Narasimhan M, Crawford DM, McGinn T, Davidson KWand the Northwell COVID-19 Research Consortium. Presenting characteristics, Comorbidities, and outcomes among 5700 patients hospitalized With COVID-19 in the New York City area. JAMA 2020;doi:10.1001/jama.2020.6775.

Source: PubMed

Подписаться