Effects of Interactive Video Game-Based Exercise on Balance in Diabetic Patients with Peripheral Neuropathy: An Open-Level, Crossover Pilot Study

Erica Shih-Wei Hung, Shih-Ching Chen, Fan-Chien Chang, Yaojung Shiao, Chih-Wei Peng, Chien-Hung Lai, Erica Shih-Wei Hung, Shih-Ching Chen, Fan-Chien Chang, Yaojung Shiao, Chih-Wei Peng, Chien-Hung Lai

Abstract

Purpose. This study evaluated the effects of interactive video game-based (IVGB) exercise on balance in diabetic patients with peripheral neuropathy. Materials and Methods. Twenty-four patients were randomly assigned to two groups (12 participants per group). Group A received IVGB training for the first 6 weeks, with no exercise in the subsequent 6 weeks. Group B had no exercise for the first 6 weeks and then underwent IVGB training in the subsequent 6 weeks. For all participants, the Modified Falls Efficacy Scale (MFES), Time Up and Go (TUG) test, Berg Balance Scale (BBS), and Unipedal Stance Test (UST) were employed at weeks 0, 6, and 12 of the experiment. Results. BBS, right-leg UST, and TUG test scores significantly improved after IVGB intervention, whereas MFES and left-leg UST tended to improve after IVGB intervention. Conclusions. This study revealed that 6-week balance-based exercise training using the IVGB system exerted positive effects on functional balance in patients with diabetic peripheral neuropathy (DPN).

Figures

Figure 1
Figure 1
Flow chart of patient recruitment in this study.
Figure 2
Figure 2
Protocol of IVGB intervention. (a) IVGB system set-up. (b) Task 1: stepping exercise. (c) Task 2: hamsters game. (d) Task 3: drumming game.
Figure 3
Figure 3
Combined changes in variable outcomes of the intervention phase in Groups A and B versus combined changes in variable outcomes of the control phase in Groups A and B. TUG test, Timed Up and Go test. BBS, Berg Balance Scale. The time/score differences for TUG test and BBS in the intervention phase were calculated by subtracting the scores/time for week 6 from those for week 0 in Group A and subtracting the scores/time for week 12 from those for week 6 in Group B, whereas their time/score differences in the control phase were calculated by subtracting the scores/time for week 12 from those for week 6 in Group A and subtracting the scores/time for week 6 from those for week 0 in Group B. P < 0.05, difference between mean increase in participants with intervention and those without intervention as determined by the Mann–Whitney U test.

References

    1. World Health Organization. Global report on diabetes. 2016.
    1. Menz H. B., Lord S. R., St George R., Fitzpatrick R. C. Walking stability and sensorimotor function in older people with diabetic peripheral neuropathy. Archives of Physical Medicine and Rehabilitation. 2004;85(2):245–252. doi: 10.1016/j.apmr.2003.06.015.
    1. Raspovic A. Gait characteristics of people with diabetes-related peripheral neuropathy, with and without a history of ulceration. Gait & Posture. 2013;38(4):723–728. doi: 10.1016/j.gaitpost.2013.03.009.
    1. Vaz M. M., Costa G. C., Reis J. G., Junior W. M., De Paula F. J. A., Abreu D. C. Postural control and functional strength in patients with type 2 diabetes mellitus with and without peripheral neuropathy. Archives of Physical Medicine and Rehabilitation. 2013;94(12):2465–2470. doi: 10.1016/j.apmr.2013.06.007.
    1. Timar B., Timar R., Gaiță L., Oancea C., Levai C., Lungeanu D. The impact of diabetic neuropathy on balance and on the risk of falls in patients with type 2 diabetes mellitus: a cross-sectional study. PLoS ONE. 2016;11(4) doi: 10.1371/journal.pone.0154654.e0154654
    1. Wang T.-Y., Chen S.-C., Peng C.-W., et al. Relevance of nerve conduction velocity in the assessment of balance performance in older adults with diabetes mellitus. Disability and Rehabilitation. 2017;39(5):419–427. doi: 10.3109/09638288.2016.1146352.
    1. Chau R. M. W., Ng T. K. W., Kwan R. L. C., Choi C.-H., Cheing G. L. Y. Risk of fall for people with diabetes. Disability and Rehabilitation. 2013;35(23):1975–1980. doi: 10.3109/09638288.2013.770079.
    1. Ambrose A. F., Paul G., Hausdorff J. M. Risk factors for falls among older adults: A review of the literature. Maturitas. 2013;75(1):51–61. doi: 10.1016/j.maturitas.2013.02.009.
    1. Ganz D. A., Bao Y., Shekelle P. G., Rubenstein L. Z. Will my patient fall? Journal of the American Medical Association. 2007;297(1):77–86. doi: 10.1001/jama.297.1.77.
    1. Zhou X., Deng H., Shen X., Lei Q. Effect of balance training on falls in patients with osteoporosis: A systematic review and meta-analysis. Journal of Rehabilitation Medicine. 2018;50(7):577–581. doi: 10.2340/16501977-2334.
    1. Studenski S., Perera S., Hile E., Keller V., Spadola-Bogard J., Garcia J. Interactive video dance games for healthy older adults. The Journal of Nutrition, Health & Aging. 2010;14(10):850–852. doi: 10.1007/s12603-010-0119-5.
    1. Lou L., Zou L., Fang Q., et al. Effect of taichi softball on function-related outcomes in older adults: a randomized control trial. Evidence-Based Complementary and Alternative Medicine. 2017;2017:9. doi: 10.1155/2017/4585424.4585424
    1. Bennett C. G., Hackney M. E. Effects of line dancing on physical function and perceived limitation in older adults with self-reported mobility limitations. Disability and Rehabilitation. 2018;40(11):1259–1265. doi: 10.1080/09638288.2017.1294207.
    1. Teggi R., Caldirola D., Fabiano B., Recanati P., Bussi M. Rehabilitation after acute vestibular disorders. The Journal of Laryngology & Otology. 2009;123(4):397–402. doi: 10.1017/s0022215108002983.
    1. Morone G., Tramontano M., Iosa M., et al. The efficacy of balance training with video game-based therapy in subacute stroke patients: a randomized controlled trial. BioMed Research International. 2014;2014:6. doi: 10.1155/2014/580861.580861
    1. Gutiérrez R. O., Galán Del Río F., De La Cuerda R. C., Alguacil Diego I. M., González R. A., Page J. C. M. A telerehabilitation program by virtual reality-video games improves balance and postural control in multiple sclerosis patients. NeuroRehabilitation. 2013;33(4):545–554. doi: 10.3233/nre-130995.
    1. Bang Y.-S., Son K. H., Kim H. J. Effects of virtual reality training using nintendo wii and treadmill walking exercise on balance and walking for stroke patients. Journal of Physical Therapy Science. 2016;28(11):3112–3115. doi: 10.1589/jpts.28.3112.
    1. Straudi S., Severini G., Sabbagh Charabati A., et al. The effects of video game therapy on balance and attention in chronic ambulatory traumatic brain injury: An exploratory study. BMC Neurology. 2017;17(1):p. 86.
    1. Brien M., Sveistrup H. An intensive virtual reality program improves functional balance and mobility of adolescents with cerebral palsy. Pediatric Physical Therapy. 2011;23(3):258–266. doi: 10.1097/PEP.0b013e318227ca0f.
    1. Grewal G. S., Sayeed R., Schwenk M., et al. Balance rehabilitation: Promoting the role of virtual reality in patients with diabetic peripheral neuropathy. Journal of the American Podiatric Medical Association. 2013;103(6):498–507. doi: 10.7547/1030498.
    1. Sihvonen S. E., Sipilä S., Era P. A. Changes in postural balance in frail elderly women during a 4-week visual feedback training: a randomized controlled trial. Gerontology. 2004;50(2):87–95. doi: 10.1159/000075559.
    1. Hill K. D., Schwarz J. A., Kalogeropoulos A. J., Gibson S. J. Fear of falling revisited. Archives of Physical Medicine and Rehabilitation. 1996;77(10):1025–1029. doi: 10.1016/S0003-9993(96)90063-5.
    1. Jernigan S. D., Pohl P. S., Mahnken J. D., Kluding P. M. Diagnostic accuracy of fall risk assessment tools in people with diabetic peripheral neuropathy. Physical Therapy in Sport. 2012;92(11):1461–1470. doi: 10.2522/ptj.20120070.
    1. Dixon C. J., Knight T., Binns E., Ihaka B., O'Brien D. Clinical measures of balance in people with type two diabetes: A systematic literature review. Gait & Posture. 2017;58:325–332. doi: 10.1016/j.gaitpost.2017.08.022.
    1. Reid S. N. S., Ryu J. K., Kim Y., Jeon B. H. The effects of fermented laminaria japonica on short-term working memory and physical fitness in the elderly. Evidence-Based Complementary and Alternative Medicine. 2018;2018:12. doi: 10.1155/2018/8109621.8109621
    1. Muir S. W., Berg K., Chesworth B., Klar N., Speechley M. Quantifying the magnitude of risk for balance impairment on falls in community-dwelling older adults: a systematic review and meta-analysis. Journal of Clinical Epidemiology. 2010;63(4):389–406. doi: 10.1016/j.jclinepi.2009.06.010.
    1. Berg K. O., Wood-Dauphinee S. L., Williams J. I., Maki B. Measuring balance in the elderly: validation of an instrument. Canadian Journal of Public Health. 1992;83(2):S7–11.
    1. Hurvitz E. A., Richardson J. K., Werner R. A. Unipedal stance testing in the assessment of peripheral neuropathy. Archives of Physical Medicine and Rehabilitation. 2001;82(2):198–204. doi: 10.1053/apmr.2001.17830.
    1. Vellas B. J., Wayne S. J., Romero L., Baumgartner R. N., Rubenstein L. Z., Garry P. J. One-leg balance is an important predictor of injurious falls in older persons. Journal of the American Geriatrics Society. 1997;45(6):735–738. doi: 10.1111/j.1532-5415.1997.tb01479.x.
    1. Ponce-Gonzalez J. G., Sanchis-Moysi J., Gonzalez-Henriquez J. J., Arteaga-Ortiz R., Calbet J. A., Dorado C. A reliable unipedal stance test for the assessment of balance using a force platform. J Sports Med Phys Fitness. 2014;54(1):108–117.
    1. Muir S. W., Berg K., Chesworth B., Speechley M. Use of the Berg Balance Scale for predicting multiple falls in community-dwelling elderly people: a prospective study. Physical Therapy in Sport. 2008;88(4):449–459. doi: 10.2522/ptj.20070251.
    1. Lajoie Y., Gallagher S. P. Predicting falls within the elderly community: comparison of postural sway, reaction time, the Berg balance scale and the Activities-specific Balance Confidence (ABC) scale for comparing fallers and non-fallers. Archives of Gerontology and Geriatrics. 2004;38(1):11–26. doi: 10.1016/s0167-4943(03)00082-7.
    1. Shumway-Cook A., Baldwin M., Polissar N. L., Gruber W. Predicting the probability for falls in community-dwelling older adults. Physical Therapy in Sport. 1997;77(8):812–819. doi: 10.1093/ptj/77.8.812.
    1. Tofthagen C., Visovsky C., Berry D. L. Strength and balance training for adults with peripheral neuropathy and high risk of fall: Current evidence and implications for future research. Oncology Nursing Forum. 2012;39(5):E416–E424. doi: 10.1188/12.ONF.E416-E424.
    1. Allet L., Armand S., De Bie R. A., et al. The gait and balance of patients with diabetes can be improved: A randomised controlled trial. Diabetologia. 2010;53(3):458–466. doi: 10.1007/s00125-009-1592-4.
    1. Grewal G. S., Schwenk M., Lee-Eng J., et al. Sensor-based interactive balance training with visual joint movement feedback for improving postural stability in diabetics with peripheral neuropathy: a randomized controlled trial. Gerontology. 2015;61(6):567–574. doi: 10.1159/000371846.
    1. Taveggia G., Villafañe J. H., Vavassori F., Lecchi C., Borboni A., Negrini S. Multimodal treatment of distal sensorimotor polyneuropathy in diabetic patients: A randomized clinical trial. Journal of Manipulative and Physiological Therapeutics. 2014;37(4):242–252. doi: 10.1016/j.jmpt.2013.09.007.
    1. Chapman A., Meyer C., Renehan E., Hill K. D., Browning C. J. Exercise interventions for the improvement of falls-related outcomes among older adults with diabetes mellitus: A systematic review and meta-analyses. Journal of Diabetes and its Complications. 2017;31(3):631–645. doi: 10.1016/j.jdiacomp.2016.09.015.
    1. Wang T., Malone J., Fu H., Heilmann C., Qu Y., Huster W. J. Crossover design and its application in late-phase diabetes studies. Journal of Diabetes. 2016;8(5):610–618. doi: 10.1111/1753-0407.12412.
    1. Li T., Yu T., Hawkins B. S., Dickersin K. Design, analysis, and reporting of crossover trials for inclusion in a meta-analysis. PLoS ONE. 2015;10(8) doi: 10.1371/journal.pone.0133023.e0133023
    1. Feingold M., Gillespie B. W. Cross-over trials with censored data. Statistics in Medicine. 1996;15(10):953–967. doi: 10.1002/(SICI)1097-0258(19960530)15:10<953::AID-SIM213>;2-M. doi: 10.1002/(SICI)1097-0258(19960530)15:10<953::AID-SIM213>;2-M.

Source: PubMed

Подписаться