DHA status influences effects of B-vitamin supplementation on cognitive ageing: a post-hoc analysis of the B-proof trial

Annick P M van Soest, Ondine van de Rest, Renger F Witkamp, Tommy Cederholm, Lisette C P G M de Groot, Annick P M van Soest, Ondine van de Rest, Renger F Witkamp, Tommy Cederholm, Lisette C P G M de Groot

Abstract

Purpose: Trials aiming to lower homocysteine by B-vitamin supplementation have reported mixed results on slowing cognitive decline. We investigated if efficacy of B-vitamin supplementation is affected by baseline plasma omega-3 fatty acid levels.

Methods: This post-hoc analysis of the B-proof trial included 191 adults aged 65 years or older with baseline plasma total homocysteine ≥ 12 μmol/L, randomly assigned to 400 µg folic acid and 500 µg vitamin B12 or placebo daily for 2 years. Global and domain-specific cognitive functioning were assessed at baseline and after 2 years. The effect of B-vitamin supplementation was analyzed according to tertiles of baseline plasma omega-3 fatty acids concentrations combined, and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) individually using multiple linear regression analyses.

Results: The mean ± SD age of the participants was 71.6 ± 5.9 years and median [IQR] Mini-Mental State Examination was 29 [28-30]. The treatment effect of B-vitamins on global cognition was larger in participants in the high compared to the middle DHA tertile (difference in z-score, mean ± SE 0.22 ± 0.10, p = 0.03). There was no significant interaction between B-vitamin supplementation and combined omega-3 fatty acid (p = 0.49) and EPA (p = 0.99) tertiles. Similarly, the efficacy of B-vitamin treatment on domain-specific cognitive functioning did not link to omega-3 fatty acid, DHA, or EPA plasma levels.

Conclusion: This post-hoc analysis indicated that efficacy of B-vitamin supplementation in slowing cognitive decline relates to DHA status, with individuals with higher plasma DHA levels benefitting more from vitamin B12 and folic acid use. The results support earlier observations that positive effects of B-vitamins in cognitive ageing may be subgroup-specific.

Trial registration: Registered at clinicaltrials.gov (NCT00696514) on June 12, 2008.

Keywords: B-vitamins; Cognition; Elderly; Healthy ageing; Older adults; Omega-3 fatty acids.

Conflict of interest statement

The authors have no relevant financial or non-financial interest to disclose.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Changes in Z-scores (mean β ± SE) in global cognition over the two year intervention period according to treatment group and A omega-3 fatty acid status, B eicosapentaenoic acid (EPA) status and C docosahexaenoic acid (DHA) status. *Significant (p < 0.05) difference in treatment effect between omega-3 fatty acid tertiles, as analyzed by linear multiple regression

References

    1. World Health Organization . Dementia: a public health priority. Geneva: World Health Organization; 2012.
    1. Smith AD, Refsum H, Bottiglieri T, Fenech M, Hooshmand B, McCaddon A, Miller JW, Rosenberg IH, Obeid R. Homocysteine and dementia: an international consensus statement. J Alzheimers Dis. 2018;62(2):561–570. doi: 10.3233/JAD-171042.
    1. Smith AD, Refsum H. Homocysteine, B vitamins, and cognitive impairment. Annu Rev Nutr. 2016 doi: 10.1146/annurev-nutr-071715-050947.
    1. Clarke R, Bennett D, Parish S, Lewington S, Skeaff M, Eussen SJ, Lewerin C, Stott DJ, Armitage J, Hankey GJ. Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals. Am J Clin Nutr. 2014;100(2):657–666. doi: 10.3945/ajcn.113.076349.
    1. Oulhaj A, Jernerén F, Refsum H, Smith AD, de Jager CA. Omega-3 fatty acid status enhances the prevention of cognitive decline by B vitamins in mild cognitive impairment. J Alzheimers Dis. 2016;50(2):547–557. doi: 10.3233/JAD-150777.
    1. Jernerén F, Elshorbagy AK, Oulhaj A, Smith SM, Refsum H, Smith AD. Brain atrophy in cognitively impaired elderly: the importance of long-chain ω-3 fatty acids and B vitamin status in a randomized controlled trial. Am J Clin Nutr. 2015;102(1):215–221. doi: 10.3945/ajcn.114.103283.
    1. van Soest AP, van de Rest O, Witkamp RF, de Groot LC. Positive effects of folic acid supplementation on cognitive aging are dependent on ω-3 fatty acid status: a post hoc analysis of the FACIT trial. Am J Clin Nutr. 2021;113(4):801–809. doi: 10.1093/ajcn/nqaa373.
    1. van der Zwaluw NL, Dhonukshe-Rutten RA, van Wijngaarden JP, Brouwer-Brolsma EM, van de Rest O, In't Veld PH, Enneman AW, van Dijk SC, Ham AC, Swart KM. Results of 2-year vitamin B treatment on cognitive performance: secondary data from an RCT. Neurology. 2014;83(23):2158–2166. doi: 10.1212/WNL.0000000000001050.
    1. Van Wijngaarden JP, Dhonukshe-Rutten RAM, Van Schoor NM, Van Der Velde N, Swart KMA, Enneman AW, Van Dijk SC, Brouwer-Brolsma EM, Zillikens MC, Van Meurs JBJ, Brug J, Uitterlinden AG, Lips P, De Groot LCPGM. Rationale and design of the B-PROOF study, a randomized controlled trial on the effect of supplemental intake of vitamin B 12and folic acid on fracture incidence. BMC Geriatr. 2011 doi: 10.1186/1471-2318-11-80.
    1. Schmidt M. Rey auditory verbal learning test: a handbook. Los Angeles: Western Psychological Services; 1996.
    1. Wechsler D (1981) WAIS-R manual: Wechsler adult intelligence scale-revised. Psychological Corporation
    1. Reitan RM. Validity of the Trail Making Test as an indicator of organic brain damage. Percept Mot Skills. 1958;8(3):271–276. doi: 10.2466/pms.1958.8.3.271.
    1. Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol. 1935;18(6):643. doi: 10.1037/h0054651.
    1. Smith A. Symbol digit modalities test. Los Angeles: Western Psychological Services; 1982.
    1. Lezak MD, Howieson DB, Loring DW, Fischer JS. Neuropsychological assessment. Oxford: Oxford University Press; 2004.
    1. Zeleniuch-Jacquotte A, Chajès V, Van Kappel A, Riboli E, Toniolo P. Reliability of fatty acid composition in human serum phospholipids. Eur J Clin Nutr. 2000;54(5):367–372. doi: 10.1038/sj.ejcn.1600964.
    1. Pertiwi K, Kok DE, Wanders AJ, de Goede J, Zock PL, Geleijnse JM. Circulating n-3 fatty acids and linoleic acid as indicators of dietary fatty acid intake in post-myocardial infarction patients. Nutr Metab Cardiovasc Dis. 2019;29(4):343–350. doi: 10.1016/j.numecd.2018.12.010.
    1. Ubbink JB, Hayward Vermaak WJ, Bissbort S. Rapid high-performance liquid chromatographic assay for total homocysteine levels in human serum. J Chromatogr B Biomed Sci Appl. 1991;565(1–2):441–446. doi: 10.1016/0378-4347(91)80407-4.
    1. Stel VS, Smit JH, Pluijm SM, Visser M, Deeg DJ, Lips P. Comparison of the LASA Physical Activity Questionnaire with a 7-day diary and pedometer. J Clin Epidemiol. 2004;57(3):252–258. doi: 10.1016/j.jclinepi.2003.07.008.
    1. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–198. doi: 10.1016/0022-3956(75)90026-6.
    1. R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing.
    1. Jernerén F, Cederholm T, Refsum H, Smith AD, Turner C, Palmblad J, Eriksdotter M, Hjorth E, Faxen-Irving G, Wahlund L-O. Homocysteine status modifies the treatment effect of omega-3 fatty acids on cognition in a randomized clinical trial in mild to moderate Alzheimer’s disease: The OmegAD Study. J Alzheimers Dis. 2019;69(1):189–197. doi: 10.3233/JAD-181148.
    1. Li M, Li W, Gao Y, Chen Y, Bai D, Weng J, Du Y, Ma F, Wang X, Liu H, Huang G. Effect of folic acid combined with docosahexaenoic acid intervention on mild cognitive impairment in elderly: a randomized double-blind, placebo-controlled trial. Eur J Nutr. 2021;60(4):1795–1808. doi: 10.1007/s00394-020-02373-3.
    1. Stark KD, Van Elswyk ME, Higgins MR, Weatherford CA, Salem N. Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults. Prog Lipid Res. 2016;63:132–152. doi: 10.1016/j.plipres.2016.05.001.
    1. Selley ML. A metabolic link between S-adenosylhomocysteine and polyunsaturated fatty acid metabolism in Alzheimer's disease. Neurobiol Aging. 2007;28(12):1834–1839. doi: 10.1016/j.neurobiolaging.2006.08.003.
    1. Kumar A, Palfrey HA, Pathak R, Kadowitz PJ, Gettys TW, Murthy SN. The metabolism and significance of homocysteine in nutrition and health. Nutr Metab. 2017 doi: 10.1186/s12986-017-0233-z.
    1. Dyall SC. Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Front Aging Neurosci. 2015;7:52. doi: 10.3389/fnagi.2015.00052.
    1. Bowman GL, Dodge HH, Guyonnet S, Zhou N, Donohue J, Bichsel A, Schmitt J, Hooper C, Bartfai T, Andrieu S, Vellas B, Carrié I, Brigitte L, Faisant C, Lala F, Delrieu J, Villars H, Combrouze E, Badufle C, Zueras A, Cantet C, Morin C, Van Kan GA, Dupuy C, Rolland Y, Caillaud C, Ousset PJ. A blood-based nutritional risk index explains cognitive enhancement and decline in the multidomain Alzheimer prevention trial. Alzheimer's Dementia Transl Res Clin Interv. 2019;5:953–963. doi: 10.1016/j.trci.2019.11.004.
    1. Assmann KE, Adjibade M, Hercberg S, Galan P, Kesse-Guyot E. Unsaturated fatty acid intakes during midlife are positively associated with later cognitive function in older adults with modulating effects of antioxidant supplementation. J Nutr. 2018;148(12):1938–1945. doi: 10.1093/jn/nxy206.
    1. Jankovic N, Steppel MT, Kampman E, De Groot LC, Boshuizen HC, Soedamah-Muthu SS, Kromhout D, Feskens EJ. Stability of dietary patterns assessed with reduced rank regression. The Zutphen Elderly Study. Nutr J. 2014;13(1):1–9. doi: 10.1186/1475-2891-13-30.

Source: PubMed

Подписаться