Longitudinal analysis of physical activity, sedentary behaviour and anthropometric measures from ages 6 to 11 years

Phillipp Schwarzfischer, Dariusz Gruszfeld, Piotr Socha, Veronica Luque, Ricardo Closa-Monasterolo, Déborah Rousseaux, Melissa Moretti, Benedetta Mariani, Elvira Verduci, Berthold Koletzko, Veit Grote, Phillipp Schwarzfischer, Dariusz Gruszfeld, Piotr Socha, Veronica Luque, Ricardo Closa-Monasterolo, Déborah Rousseaux, Melissa Moretti, Benedetta Mariani, Elvira Verduci, Berthold Koletzko, Veit Grote

Abstract

Background/objectives: The aim of this study was to examine the effect of physical activity (PA) and sedentary behaviour (SB) on body mass index (BMI) and fat mass index (FMI) in children over the course of five years and identify potential bi-directional associations.

Subjects/methods: Data were drawn from the EU Childhood Obesity Project (CHOP). PA and SB were measured with the SenseWear Armband 2 at the ages of 6 (T1), 8 (T2) and 11 (T3) years. Height and weight were measured and BMI was calculated at each time point, resulting in 1254 complete observations from 600 children. Bio impedance analysis was used to measure body fat mass and eventually calculate FMI. To examine the longitudinal association between PA/SB and BMI/FMI as well as to account for repeated measure on these children, mixed model analysis was employed.

Results: Higher levels of total PA and moderate-to-vigorous PA (MVPA) were associated with lower BMI and FMI and higher SB with higher BMI and FMI over the five year period. When looking at the age dependent effects, negative associations of MVPA (βMVPA x age: - 0.05, 95% confidence interval (CI): - 0.09 - -0.01, p = 0.007) and positive associations of SB (βSB x age: 0.04, 95% CI: 0.02-0.06, p < 0.001) increased with each year of age. In a model combining these two effects, only SB x age interaction remained significant (βSB x age: 0.04, 95% CI: 0.03-0.06, p = 0.01). No significant interaction between MVPA and SB could be discerned. Light Physical activity showed no significant associations with BMI or FMI. When reversing outcome and predictor; higher BMI or FMI showed a negative association with MVPA and a positive association with SB, but no age dependency.

Conclusions: More time per day in SB was associated with a higher BMI over the course of five years, whereas higher MVPA had an inverse effect. In a combined model, only effects of higher SB remained significant, emphasizing the importance of SB in obesity prevention. Present bidirectional associations, where lower body size was associated with higher PA and lower SB, indicated the need for an integrated approach of activity and weight control for obesity prevention.

Trial registration: ClinicalTrials.gov Identifier: NCT00338689 . Registered: June 19, 2006 (retrospectively registered).

Keywords: Accelerometer; CHOP; Light physical activity; MVPA; Obesity; SenseWear armband.

Conflict of interest statement

Ethics approval and consent to participate

Belgium: Comitè d’Ethique Medicale de Centre Hospitalier Chretien Liege; No. OM87. Germany: Bayerische Landesärztekammer Ethik-Kommission, No. 02070. Italy: Azienda Ospedaliera San Paolo Comitato Etico, No 14/2002. Poland: Instytut Pomnik-Centrum Zdrowia Dziecka Komitet Etyczny, No 243/KE/2001. Spain: Comité ético de investigación clínica del Hospital Universitario de Tarragona Joan XXIII, Comité ético de investigación clínica del Hospital Universitario Sant Joan de Reus. Written informed consent has been obtained from all participants included in the analysed study and the study is being conducted in accordance with the declaration of Helsinki.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

    1. Wijnhoven TM, van Raaij JM, Spinelli A, Starc G, Hassapidou M, Spiroski I, et al. WHO European childhood obesity surveillance initiative: body mass index and level of overweight among 6–9-year-old children from school year 2007/2008 to school year 2009/2010. BMC Public Health. 2014;14:806. doi: 10.1186/1471-2458-14-806.
    1. Manios Y, Costarelli V. Childhood obesity in the WHO European region. In: Moreno LA, Pigeot I, Ahrens W, editors. Epidemiology of obesity in children and adolescents: prevalence and etiology. New York: Springer New York; 2011. pp. 43–68.
    1. Kelishadi R. Childhood overweight, obesity, and the metabolic syndrome in developing countries. Epidemiol Rev. 2007;29:62–76. doi: 10.1093/epirev/mxm003.
    1. Griffiths LJ, Sera F, Cortina-Borja M, Law C, Ness A, Dezateux C. Objectively measured physical activity and sedentary time: cross-sectional and prospective associations with adiposity in the millennium cohort study. BMJ Open. 2016;6:e010366. doi: 10.1136/bmjopen-2015-010366.
    1. Carson V, Hunter S, Kuzik N, Gray CE, Poitras VJ, Chaput JP, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: an update. Appl Physiol Nutr Metab. 2016;41:S240–S265. doi: 10.1139/apnm-2015-0630.
    1. Lubans DR, Hesketh K, Cliff DP, Barnett LM, Salmon J, Dollman J, et al. A systematic review of the validity and reliability of sedentary behaviour measures used with children and adolescents. Obes Rev. 2011;12:781–799. doi: 10.1111/j.1467-789X.2011.00896.x.
    1. Wilks DC, Besson H, Lindroos AK, Ekelund U. Objectively measured physical activity and obesity prevention in children, adolescents and adults: a systematic review of prospective studies. Obes Rev. 2011;12:e119–e129. doi: 10.1111/j.1467-789X.2010.00775.x.
    1. Wilks DC, Sharp SJ, Ekelund U, Thompson SG, Mander AP, Turner RM, et al. Objectively measured physical activity and fat mass in children: a bias-adjusted meta-analysis of prospective studies. PLoS One. 2011;6:e17205. doi: 10.1371/journal.pone.0017205.
    1. Marques A, Minderico C, Martins S, Palmeira A, Ekelund U, Sardinha LB. Cross-sectional and prospective associations between moderate to vigorous physical activity and sedentary time with adiposity in children. Int J Obes. 2016;40:28–33. doi: 10.1038/ijo.2015.168.
    1. Tanaka C, Reilly JJ, Huang WY. Longitudinal changes in objectively measured sedentary behaviour and their relationship with adiposity in children and adolescents: systematic review and evidence appraisal. Obes Rev. 2014;15:791–803. doi: 10.1111/obr.12195.
    1. Froberg A. “Couch-potatoeism” and childhood obesity: the inverse causality hypothesis. Prev Med. 2015;73:53–54. doi: 10.1016/j.ypmed.2015.01.018.
    1. Hjorth MF, Chaput JP, Ritz C, Dalskov SM, Andersen R, Astrup A, et al. Fatness predicts decreased physical activity and increased sedentary time, but not vice versa: support from a longitudinal study in 8- to 11-year-old children. Int J Obes (Lond) 2014;38:959–965. doi: 10.1038/ijo.2013.229.
    1. Richmond RC, Davey Smith G, Ness AR, den Hoed M, McMahon G, Timpson NJ. Assessing causality in the association between child adiposity and physical activity levels: a Mendelian randomization analysis. PLoS Med. 2014;11:e1001618. doi: 10.1371/journal.pmed.1001618.
    1. Hallal PC, Reichert FF, Ekelund U, Dumith SC, Menezes AM, Victora CG, et al. Bidirectional cross-sectional and prospective associations between physical activity and body composition in adolescence: birth cohort study. J Sports Sci. 2012;30:183–190. doi: 10.1080/02640414.2011.631570.
    1. Koletzko B, von Kries R, Closa R, Escribano J, Scaglioni S, Giovannini M, et al. Lower protein in infant formula is associated with lower weight up to age 2 y: a randomized clinical trial. Am J Clin Nutr. 2009;89:1836–1845. doi: 10.3945/ajcn.2008.27091.
    1. Weber M, Grote V, Closa-Monasterolo R, Escribano J, Langhendries JP, Dain E, et al. Lower protein content in infant formula reduces BMI and obesity risk at school age: follow-up of a randomized trial. Am J Clin Nutr. 2014;99:1041–1051. doi: 10.3945/ajcn.113.064071.
    1. Andre D, Pelletier R, Farringdon J, Safier S, Talbott W, Stone R, et al. The development of the SenseWear® armband, a revolutionary energy assessment device to assess physical activity and lifestyle. BodyMedia Inc. 2006. . Accessed 3 Dec 2018.
    1. Trost SG, Pate RR, Freedson PS, Sallis JF, Taylor WC. Using objective physical activity measures with youth: how many days of monitoring are needed? Med Sci Sports Exerc. 2000;32:426–431. doi: 10.1097/00005768-200002000-00025.
    1. Schwarzfischer P, Weber M, Gruszfeld D, Socha P, Luque V, Escribano J, et al. BMI and recommended levels of physical activity in school children. BMC Public Health. 2017;17:595. doi: 10.1186/s12889-017-4492-4.
    1. Trost SG, Loprinzi PD, Moore R, Pfeiffer KA. Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc. 2011;43:1360–1368. doi: 10.1249/MSS.0b013e318206476e.
    1. Sedentary Behaviour Research Network Letter to the editor: standardized use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol Nutr Metab. 2012;37:540–542. doi: 10.1139/h2012-024.
    1. Tremblay MS, Aubert S, Barnes JD, Saunders TJ, Carson V, Latimer-Cheung AE, et al. Sedentary behavior research network (SBRN) – terminology consensus project process and outcome. Int J Behav Nutr Phys Act. 2017;14:75. doi: 10.1186/s12966-017-0525-8.
    1. Arvidsson D, Slinde F, Larsson S, Hulthen L. Energy cost in children assessed by multisensor activity monitors. Med Sci Sports Exerc. 2009;41:603–611. doi: 10.1249/MSS.0b013e31818896f4.
    1. Calabro MA, Welk GJ, Eisenmann JC. Validation of the SenseWear pro armband algorithms in children. Med Sci Sports Exerc. 2009;41:1714–1720. doi: 10.1249/MSS.0b013e3181a071cf.
    1. Backlund C, Sundelin G, Larsson C. Validity of armband measuring energy expenditure in overweight and obese children. Med Sci Sports Exerc. 2010;42:1154–1161. doi: 10.1249/Mss.0b013e3181c84091.
    1. de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85:660–667. doi: 10.2471/BLT.07.043497.
    1. Luque V, Closa-Monasterolo R, Rubio-Torrents C, Zaragoza-Jordana M, Ferre N, Gispert-Llaurado M, et al. Bioimpedance in 7-year-old children: validation by dual X-ray absorptiometry - part 1: assessment of whole body composition. Ann Nutr Metab. 2014;64:113–121. doi: 10.1159/000356450.
    1. Petersen AC, Crockett L, Richards M, Boxer A. A self-report measure of pubertal status: reliability, validity, and initial norms. J Youth Adolesc. 1988;17:117–133. doi: 10.1007/bf01537962.
    1. Mitchell JA, Pate RR, Beets MW, Nader PR. Time spent in sedentary behavior and changes in childhood BMI: a longitudinal study from ages 9 to 15 years. Int J Obes. 2013;37:54–60. doi: 10.1038/ijo.2012.41.
    1. Mann KD, Howe LD, Basterfield L, Parkinson KN, Pearce MS, Reilly JK, et al. Longitudinal study of the associations between change in sedentary behavior and change in adiposity during childhood and adolescence: Gateshead millennium study. Int J Obes. 2017;41:1042–1047. doi: 10.1038/ijo.2017.69.
    1. Katzmarzyk PT, Barreira TV, Broyles ST, Champagne CM, Chaput JP, Fogelholm M, et al. Physical activity, sedentary time, and obesity in an international sample of children. Med Sci Sports Exerc. 2015;47:2062–2069. doi: 10.1249/mss.0000000000000649.
    1. Basterfield L, Pearce MS, Adamson AJ, Reilly JK, Parkinson KN, Reilly JJ. Effect of choice of outcome measure on studies of the etiology of obesity in children. Ann Epidemiol. 2012;22:888–891. doi: 10.1016/j.annepidem.2012.09.007.
    1. Talma H, Chinapaw MJ, Bakker B, HiraSing RA, Terwee CB, Altenburg TM. Bioelectrical impedance analysis to estimate body composition in children and adolescents: a systematic review and evidence appraisal of validity, responsiveness, reliability and measurement error. Obes Rev. 2013;14:895–905. doi: 10.1111/obr.12061.
    1. Mitchell JA, Pate RR, Espana-Romero V, O'Neill JR, Dowda M, Nader PR. Moderate-to-vigorous physical activity is associated with decreases in body mass index from ages 9 to 15 years. Obesity (Silver Spring) 2013;21:E280–E293. doi: 10.1002/oby.20118.
    1. Treuth MS, Hou N, Young DR, Maynard LM. Accelerometry-measured activity or sedentary time and overweight in rural boys and girls. Obes Res. 2005;13:1606–1614. doi: 10.1038/oby.2005.197.
    1. Kwon S, Janz KF, Burns TL, Levy SM. Association between light-intensity physical activity and adiposity in childhood. Pediatr Exerc Sci. 2011;23:218. doi: 10.1123/pes.23.2.218.
    1. Trinh A, Campbell M, Ukoumunne OC, Gerner B, Wake M. Physical activity and 3-year BMI change in overweight and obese children. Pediatrics. 2013;131:e470–e477. doi: 10.1542/peds.2012-1092.
    1. Metcalf B, Henley W, Wilkin T. Effectiveness of intervention on physical activity of children: systematic review and meta-analysis of controlled trials with objectively measured outcomes (EarlyBird 54). BMJ. 2012;345:e5888. 10.1136/bmj.e5888.
    1. Harris KC, Kuramoto LK, Schulzer M, Retallack JE. Effect of school-based physical activity interventions on body mass index in children: a meta-analysis. CMAJ. 2009;180:719–726. doi: 10.1503/cmaj.080966.
    1. Mei H, Xiong Y, Xie S, Guo S, Li Y, Guo B, et al. The impact of long-term school-based physical activity interventions on body mass index of primary school children - a meta-analysis of randomized controlled trials. BMC Public Health. 2016;16:205. doi: 10.1186/s12889-016-2829-z.
    1. Dumith SC, Gigante DP, Domingues MR, Kohl HW., 3rd Physical activity change during adolescence: a systematic review and a pooled analysis. Int J Epidemiol. 2011;40:685–698. doi: 10.1093/ije/dyq272.
    1. Dorminy CA, Choi L, Akohoue SA, Chen KY, Buchowski MS. Validity of a multisensor armband in estimating 24-h energy expenditure in children. Med Sci Sports Exerc. 2008;40:699–706. doi: 10.1249/MSS.0b013e318161ea8f.
    1. Arvidsson D, Slinde F, Larsson S, Hulthen L. Energy cost of physical activities in children: validation of SenseWear armband. Med Sci Sports Exerc. 2007;39:2076–2084. doi: 10.1249/mss.0b013e31814fb439.
    1. Predieri B, Bruzzi P, Lami F, Vellani G, Malavolti M, Battistini NC, et al. Accuracy of SenseWear Pro2 armband to predict resting energy expenditure in childhood obesity. Obesity (Silver Spring) 2013;21:2465–2470. doi: 10.1002/oby.20427.
    1. Lopez GA, Brond JC, Andersen LB, Dencker M, Arvidsson D. Validation of SenseWear armband in children, adolescents, and adults. Scand J Med Sci Sports. 2018;28:487–495. doi: 10.1111/sms.12920.

Source: PubMed

Подписаться