Blue-Yellow VEP with Projector-Stimulation in Glaucoma

Laura Dussan Molinos, Cord Huchzermeyer, Robert Lämmer, Jan Kremers, Folkert K Horn, Laura Dussan Molinos, Cord Huchzermeyer, Robert Lämmer, Jan Kremers, Folkert K Horn

Abstract

Background and aim: In the past, increased latencies of the blue-on-yellow pattern visually evoked potentials (BY-VEP), which predominantly originate in the koniocellular pathway, have proven to be a sensitive biomarker for early glaucoma. However, a complex experimental setup based on an optical bench was necessary to obtain these measurements because computer screens lack sufficient temporal, spatial, spectral, and luminance resolution. Here, we evaluated the diagnostic value of a novel setup based on a commercially available video projector.

Methods: BY-VEPs were recorded in 126 participants (42 healthy control participants, 12 patients with ocular hypertension, 17 with "preperimetric" glaucoma, and 55 with perimetric glaucoma). Stimuli were created with a video projector (DLP technology) by rear projection of a blue checkerboard pattern (460 nm) for 200 ms (onset) superimposed on a bright yellow background (574 nm), followed by an offset interval where only the background was active. Thus, predominantly S-cones were stimulated while L- and M-cone responses were suppressed by light adaptation. Times of stimulus onset to VEP onset-trough (N-peak time) and offset-peak (P-peak time) were analyzed after age-correction based on linear regression in the normal participants.

Results: The resulting BY-VEPs were quite similar to those obtained in the past with the optical bench: pattern-onset generated a negative deflection of the VEP, whereas the offset-response was dominated by a positive component. N-peak times were significantly increased in glaucoma patients (preperimetric 136.1 ± 10 ms, p < 0.05; perimetric 153.1 ± 17.8 ms, p < 0.001) compared with normal participants (123.6 ± 7.7 ms). Furthermore, they were significantly correlated with disease severity as determined by visual field losses retinal nerve fiber thinning (Spearman R = -0.7, p < 0.001).

Conclusions: Video projectors can be used to create optical stimuli with high temporal and spatial resolution, thus potentially enabling sophisticated electrophysiological measurements in clinical practice. BY-VEPs based on such a projector had a high diagnostic value for detection of early glaucoma. Registration of study Registration site: www.

Clinicaltrials: gov Trial registration number: NCT00494923.

Keywords: Blue–yellow VEP; Glaucoma; Onset–offset VEP; Projector-stimulation.

Conflict of interest statement

The authors declare that they have no conflicts of interest. The authors have no commercial interest in the equipment used in this work.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
A Measurement setting for rear projection with an LED-beamer. B Spectra for blue and yellow stimulation by the present beamer. C Stimulus locations of the test grid from the Octopus perimeter (G1-protocol). The 21 central test points (open symbols) overlapping with the VEP-stimulus are used for the calculation of the central MD and central SLV. D Optic disc segmentation: 4 peripapillary sectors in which the RNFL thickness was determined. The temporal optic disc sectors anatomically overlapped with the VEP test field. The ring indicates the position of the scan circle of the OCT
Fig. 2
Fig. 2
Blue-on-yellow VEP measurements in a healthy participant with the projector comparing on-screen and back-screen projection. In on-screen stimulation, the position of the projector was between patient and the screen. The angle of field size, the spatial frequency, and the luminance was the same for both methods. The dotted lines indicate the 95% confidence interval for six repeated tests
Fig. 3
Fig. 3
The response to a blue-on-yellow pattern-onset/offset stimulus (yellow light 571 nm, superimposed blue pattern 460 nm). The figure shows the definitions of peak times and amplitudes for the (negative) onset-component and (positive) offset response. The mean luminance was 640 cd/m2
Fig. 4
Fig. 4
A Age-dependence of the peak time of the N component in normal participants. If both eyes were studied (open symbols above and below a cross symbol), the mean from right and left eye were calculated (cross symbol). B The data in all groups were age corrected using the regression line as shown in Fig. 4A. Symbols: normal, cross; OHT, filled box; preperimetric glaucoma, open box; perimetric glaucoma, filled circle
Fig. 5
Fig. 5
The averaged BY-VEPs (solid line) from ten normal participants (age group 50–60 years). The thin lines indicate 95% confidence interval. Dotted and dashed line show results from a glaucoma patient (age 59 years) with perimetric defects in both eyes
Fig. 6
Fig. 6
Mean values (± 95 confidence interval) of BY-VEPs in normal participants and three patient groups. A Amplitudes. B Peak times. P values indicate significant differences between patients and control group. Paired comparison of on and offset components with the Wilcoxon-test (*p < 0.001) reveal significant larger onset than offset amplitudes in all groups. Onset and offset peak times differed significantly (*p < 0.001) only in perimetric patients
Fig. 7
Fig. 7
ROC-curves generated for perimetric patients. A amplitudes of on- and off-set VEP. B Peak times of the (negative) onset-component show the largest diagnostic value
Fig. 8
Fig. 8
VEP-onset results (A amplitude N, B peak time N) as a function of thickness of the corresponding RNFL show significant associations. Symbols: normal, cross; OHT, filled box; preperimetric glaucoma, open box; perimetric glaucoma, filled circle. In control participants, the RNFL is thicker, the amplitudes are larger, and the peak times are shorter than in patients. Spearman correlation coefficients are included for all participants and for glaucoma patients only (***p < 0.001, **p < 0.01)
Fig. 9
Fig. 9
VEP-onset results as a function of central perimetric mean defects (Spearman rho, ***p < 0.001, **p < 0.01). Symbols: normal, cross; OHT, filled box; preperimetric glaucoma, open box; perimetric glaucoma, filled circle

References

    1. Greenstein VC, Seliger S, Zemon V, Ritch R. Visual evoked potential assessment of the effects of glaucoma on visual subsystems. Vision Res. 1998;38:1901–1911. doi: 10.1016/S0042-6989(97)00348-9.
    1. Hu CX, Zangalli C, Hsieh M, Gupta L, Williams AL, Richman J, Spaeth GL. What do patients with glaucoma see? Visual symptoms reported by patients with glaucoma. Am J Med Sci. 2014;348:403–409. doi: 10.1097/maj.0000000000000319.
    1. Horn FK, Jonas JB, Budde WM, Jünemann AM, Mardin CY, Korth M. Monitoring glaucoma progression with visual evoked potentials of the blue-sensitive pathway. Invest Ophthalmol Vis Sci. 2002;43:1828–1834.
    1. Anderson RS. The psychophysics of glaucoma: improving the structure/function relationship. Elsevier Ltd. 2006;25:79–97. doi: 10.1016/j.preteyeres.2005.06.001.
    1. Tai TYT. Visual evoked potentials and glaucoma. Asia Pac J Ophthalmol (Phila) 2018;7:352–355. doi: 10.22608/APO.2017532.
    1. Parisi V, Miglior S, Manni G, Centofanti M, Bucci MG. Clinical ability of pattern electroretinograms and visual evoked potentials in detecting visual dysfunction in ocular hypertension and glaucoma. Ophthalmology. 2006;113:216–228. doi: 10.1016/j.ophtha.2005.10.044.
    1. Kothari R, Bokariya P, Singh S, Singh R. A comprehensive review on methodologies employed for visual evoked potentials. Scientifica (Cairo) 2016;2016:9852194. doi: 10.1155/2016/9852194.
    1. Hohberger B, Kremers J, Horn FK. Steady-state visually evoked potentials elicited by multifrequency pattern-reversal stimulation. Transl Vis Sci Technol. 2019;8:24. doi: 10.1167/tvst.8.1.24.
    1. Arakawa K, Tobimatsu S, Tomoda H, Kira J, Kato M (1999) The effect of spatial frequency on chromatic and achromatic steady-state visual evoked potentials. Clin Neurophysiol 110(11):1959–1964. 10.1016/s1388-2457(99)00139-x
    1. Robson AG, Kulikowski JJ. Objective assessment of chromatic and achromatic pattern adaptation reveals the temporal response properties of different visual pathways. Vis Neurosci. 2012;29:301–313. doi: 10.1017/s0952523812000351.
    1. Accornero N, Gregori B, Pro S, Scappini G, La Riccia M. Chromatic modulation of luminance visual evoked potential latencies in healthy subjects and patients with mild vision disorders. Clin Neurophysiol. 2008;119:1683–1688. doi: 10.1016/j.clinph.2008.03.011.
    1. Korth M, Nguyen NX, Junemann A, Martus P, Jonas JB. VEP test of the blue-sensitive pathway in glaucoma. Invest Ophthalmol Vis Sci. 1994;35:2599–2610.
    1. Horn FK, Bergua A, Junemann A, Korth M. Visual evoked potentials under luminance contrast and color contrast stimulation in glaucoma diagnosis. J Glaucoma. 2000;9:428–437. doi: 10.1097/00061198-200012000-00003.
    1. Kremers J, Stepien MW, Scholl HPN, Saito C. Cone selective adaptation influences L- and M-cone driven signals in electroretinography and psychophysics. J Vis. 2003;3:146–160. doi: 10.1167/3.2.3.
    1. Kremers J, McKeefry DJ, Murray IJ, Parry NRA. Developments in non-invasive visual electrophysiology. Vision Res. 2020;174:50–56. doi: 10.1016/j.visres.2020.05.003.
    1. Horn FK, Michelson G, Sehnitzler E, Mardin CY, Korth M, Junemann AG. Visual evoked potentials of the blue-sensitive pathway under cold provocation in normals and glaucomas. J Glaucoma. 2006;15:17–22. doi: 10.1097/01.ijg.0000196656.23578.1b.
    1. Packer O, Diller LC, Verweij J, Lee BB, Williams DR, Dacey DM, Pokorny J, Brainard DH. Characterization and use of a digital light projector for vision research. Vision Res. 2001;41:427–439. doi: 10.1016/S0042-6989(00)00271-6.
    1. Gause A (2014) Projektionsfolien. Produktion partner 7-8: 46-51
    1. Robson AG, Nilsson J, Li S, Jalali S, Fulton AB, Tormene AP, Holder GE, Brodie SE. ISCEV guide to visual electrodiagnostic procedures. Doc Ophthalmol. 2018;136:1–26. doi: 10.1007/s10633-017-9621-y.
    1. Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Mizota A, Tormene AP. ISCEV standard for clinical visual evoked potentials: (2016 update) Doc Ophthalmol. 2016;133:1–9. doi: 10.1007/s10633-016-9553-y.
    1. Lauterwald F, Neumann CP, Lenz R, Jünemann AG, Mardin CY, Meyer-Wegener K, Horn FK (2012) The Erlangen Glaucoma Registry: a scientific database for longitudinal analysis of glaucoma. Technical reports/Dep Informatik CS-2011, 2:1–9
    1. Jonas JB, Gusek GC, Naumann GO. Optic disc morphometry in chronic primary open-angle glaucoma. I. Morphometric intrapapillary characteristics. Graefes Arch Clin Exp Ophthalmol. 1988;226:522–530. doi: 10.1007/BF02169199.
    1. Horn FK, Mardin CY, Laemmer R, Baleanu D, Juenemann AM, Kruse FE, Tornow RP (2009) Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT. Invest Ophthalmol Vis Sci 50:1971–1977. 10.1167/iovs.08-2405
    1. Porciatti V, Burr DC, Morrone MC, Fiorentini A. The effects of aging on the pattern electroretinogram and visual evoked potential in humans. Vision Res. 1992;32:1199–1209. doi: 10.1016/0042-6989(92)90214-4.
    1. Fuest M, Kieckhoefel J, Mazinani B, Kuerten D, Koutsonas A, Koch E, Walter P, Plange N. Blue-yellow and standard pattern visual evoked potentials in phakic and pseudophakic glaucoma patients and controls. Graefes Arch Clin Exp Ophthalmol. 2015;253:2255–2261. doi: 10.1007/s00417-015-3152-6.
    1. Klistorner A, Graham SL, Martins A, Grigg JR, Arvind H, Kumar RS, James AC, Billson FA. Multifocal blue-on-yellow visual evoked potentials in early glaucoma. Ophthalmology. 2007;114:1613–1621. doi: 10.1016/j.ophtha.2006.11.037.
    1. Porciatti V, Sartucci F (1999) Normative data for onset VEPs to red-green and blue-yellow chromatic contrast. Clin Neurophysiol 110(4):772–781. 10.1016/s1388-2457(99)00007-3
    1. Korth M, Horn FK, Storck B, Jonas J. The pattern-evoked electroretinogram (PERG) Age-related alterations and changes in glaucoma. Graefes Arch Clin Exp Ophthalmol. 1989;227(2):123–130. doi: 10.1007/BF02169783.
    1. Rodarte C, Hood DC, Yang EB, Grippo T, Greenstein VC, Liebmann JM, Ritch R. The effects of glaucoma on the latency of the multifocal visual evoked potential. Br J Ophthalmol. 2006;90:1132–1136. doi: 10.1136/bjo.2006.095158.
    1. Korth M, Nguyen NX (1997) The effect of stimulus size on human cortical potentials evoked by chromatic patterns. Vision Res 37: 649–657 S0042–6989(96)00189–7 [pii]
    1. Accornero N, Gregori B, Galie E, Feo AD, Agnesi R. A new color vep procedure discloses asymptomatic visual impairments in optic neuritis and glaucoma suspects. Acta Neurologica Scandinavica. 2000;102(258):263.
    1. Martin PR, White AJ, Goodchild AK, Wilder HD, Sefton AE. Evidence that blue-on cells are part of the third geniculocortical pathway in primates. Eur J Neurosci. 1997;9:1536–1541. doi: 10.1111/j.1460-9568.1997.tb01509.x.
    1. Fuest M, Plange N, Jamali S, Schwarzer H, Roessler G, Walter P, Mazinani B. The effect of cataract surgery on blue-yellow and standard-pattern visual-evoked potentials. Graefes Arch Clin Exp Ophthalmol. 2014;252:1831–1837. doi: 10.1007/s00417-014-2728-x.
    1. Fox M, Barber C, Perkins A, Keating D. Comparison of cathode ray tube and liquid crystal display stimulators for use in multifocal VEP. Doc Ophthalmol. 2014;129:115–122. doi: 10.1007/s10633-014-9451-0.
    1. Matsumoto CS, Shinoda K, Matsumoto H, Funada H, Minoda H, Mizota A. Liquid crystal display screens as stimulators for visually evoked potentials: flash effect due to delay in luminance changes. Doc Ophthalmol. 2013;127:103–112. doi: 10.1007/s10633-013-9387-9.
    1. Kaltwasser C, Horn FK, Kremers J, Juenemann A. A comparison of the suitability of cathode ray tube (CRT) and liquid crystal display (LCD) monitors as visual stimulators in mfERG diagnostics. Doc Ophthalmol. 2008;118:179–189. doi: 10.1007/s10633-008-9152-7.
    1. Elze T. Misspecifications of stimulus presentation durations in experimental psychology: a systematic review of the psychophysics literature. PLoS One. 2010;5:e12792. doi: 10.1371/journal.pone.0012792.
    1. Matsumoto CS, Shinoda K, Matsumoto H, Seki K, Nagasaka E, Iwata T, Mizota A. What monitor can replace the cathode-ray tube for visual stimulation to elicit multifocal electroretinograms? J Vis. 2014;14:1–14. doi: 10.1167/14.9.2.
    1. Kwak Y, MacDonald L. Characterisation of a desktop LCD projector. Elsevier Science BV. 2000;21:179–194.
    1. Liu H, Bhushan B. Nanotribological characterization of digital micromirror devices using an atomic force microscope. Ultramicroscopy. 2004;100:391–412. doi: 10.1016/j.ultramic.2003.11.016.
    1. Toadere F, Mastorakis N (2009) A comparison between a CRT and a LCD monitors colors rendering.
    1. Bauer B. A timely reminder about stimulus display times and other presentation parameters on CRTs and newer technologies. Can J Exp Psychol. 2015;69:264–273. doi: 10.1037/cep0000043.
    1. Brigell M, Chair MB, Barber C, Moskowitz A, Robson J. Guidelines for calibration of stimulus and recording parameters used in clinical electrophysiology of vision. Doc Ophthalmol. 2003;107:185–193. doi: 10.1023/A:1026244901657.
    1. Garaizar P, Vadillo MA, López-de-Ipina D, Matute H. Measuring software timing errors in the presentation of visual stimuli in cognitive neuroscience experiments. PLoS ONE. 2014;9:e85108. doi: 10.1371/journal.pone.0085108.

Source: PubMed

Подписаться