Autoantibodies Activating the β2-Adrenergic Receptor Characterize Patients With Primary and Secondary Glaucoma

Bettina Hohberger, Rudolf Kunze, Gerd Wallukat, Katja Kara, Christian Y Mardin, Robert Lämmer, Ursula Schlötzer-Schrehardt, Sami Hosari, Folkert Horn, Luis Munoz, Martin Herrmann, Bettina Hohberger, Rudolf Kunze, Gerd Wallukat, Katja Kara, Christian Y Mardin, Robert Lämmer, Ursula Schlötzer-Schrehardt, Sami Hosari, Folkert Horn, Luis Munoz, Martin Herrmann

Abstract

Recently, agonistic autoantibodies (agAAb) activating the β2-adrenergic receptor were detected in primary open-angle glaucoma (POAG) or ocular hypertension (OHT) patients and were linked to intraocular pressure (IOP) (1). The aim of the present study was to quantify β2-agAAb in the sera of glaucoma suspects and patients with primary and secondary glaucoma. Patients with OHT (n = 33), pre-perimetric POAG (pre-POAG; n = 11), POAG (n = 28), and 11 secondary OAG (SOAG) underwent ophthalmological examinations including examinations with Octopus G1 perimetry and morphometry. Twenty-five healthy individuals served as controls. Serum-derived IgG samples were analyzed for β2-agAAb using a functional bioassay. The beat-rate-increase of spontaneously beating cultured neonatal rat cardiomyocytes was monitored with 1.6 beats/15 s as cut-off. None of the sera of normal subjects showed β2-agAAb. In POAG or OHT patients increased beating rates of 4.1 ± 2.2 beats/15 s, and 3.7 ± 2.8 beats/15 s were detected (p > 0.05). Glaucoma patients with (POAG) and without perimetric (pre-POAG) defects did not differ (pre-POAG 4.4 ± 2.6 beats/15 s, POAG 4.1 ± 2.0 beats/15 s, p > 0.05). Patients with SOAG yielded mean beating rates of 4.7 ± 1.7 beats/15 s (p > 0.05). β2-agAAb were seen in 73% of OHT, 82% of pre-POAG, 82% of POAG, and 91% SOAG patients (p < 0.001). Clinical data did not correlate with beating rate (p > 0.05). The robust β2-agAAb seropositivity in patients with OHT, pre-POAG, POAG, and SOAG suggest a primary common role for β2-agAAb starting early in glaucoma pathophysiology and turned out to be a novel marker identifying all patients with increased IOP independent of glaucoma stage and entity.

Trial registration: ClinicalTrials.gov NCT00494923.

Keywords: autoantibodies; glaucoma; ocular hypertension; primary open-angle glaucoma; secondary open-angle glaucoma; β2-adrenergic receptor.

Copyright © 2019 Hohberger, Kunze, Wallukat, Kara, Mardin, Lämmer, Schlötzer-Schrehardt, Hosari, Horn, Munoz and Herrmann.

Figures

Figure 1
Figure 1
β2-agAAb in patients with OHT, primary, and secondary glaucoma. Cardiomyocyte beating rates [beats/15 s] modulated by IgG from sera of control subjects (normal healthy donor, NHD), patients with ocular hypertension (OHT), pre-perimetric POAG (primary open-angle glaucoma), POAG, and SOAG (secondary open-angle glaucoma) (cut-off 1.6 beats/15 s); cardiomyocyte beating rate is counted as difference of the baseline value (i.e., spontaneously beating rate of cultured cardiomyocytes) and the activated beating rate after addition of the test samples; therefore, some negative values were recorded.

References

    1. Junemann A, Hohberger B, Rech J, Sheriff A, Fu Q, Schlotzer-Schrehardt U, et al. . Agonistic autoantibodies to the β2-adrenergic receptor involved in the pathogenesis of open-angle glaucoma. Front Immunol. (2018) 9:145. 10.3389/fimmu.2018.00145
    1. Hohberger B, Chaudhri MA, Michalke B, Lucio M, Nowomiejska K, Schlotzer-Schrehardt U, et al. . Levels of aqueous humor trace elements in patients with open-angle glaucoma. J Trace Elem Med Biol. (2018) 45:150–5. 10.1016/j.jtemb.2017.10.003
    1. Flammer J. The vascular concept of glaucoma. Surv Ophthalmol. (1994) 38(Suppl):S3–6. 10.1016/0039-6257(94)90041-8
    1. Tektas OY, Lutjen-Drecoll E. Structural changes of the trabecular meshwork in different kinds of glaucoma. Exp Eye Res. (2009) 88:769–75. 10.1016/j.exer.2008.11.025
    1. Hohberger B, Monczak E, Mardin CY. 26 years of the erlangen glaucoma registry: demographic and perimetric characteristics of patients through the ages. Klin Monbl Augenheilkd. (2017) 236:691–8. 10.1055/s-0043-112856
    1. Wax MB, Molinoff PB. Distribution and properties of beta-adrenergic receptors in human iris-ciliary body. Invest Ophthalmol Vis Sci. (1987) 28:420–30.
    1. Crider JY, Sharif NA. Adenylyl cyclase activity mediated by beta-adrenoceptors in immortalized human trabecular meshwork and non-pigmented ciliary epithelial cells. J Ocul Pharmacol Ther. (2002) 18:221–30. 10.1089/108076802760116142
    1. Ferrari-Dileo G. Beta 1 and beta 2 adrenergic binding sites in bovine retina and retinal blood vessels. Invest Ophthalmol Vis Sci. (1988) 29:695–9.
    1. Mantyh PW, Rogers SD, Allen CJ, Catton MD, Ghilardi JR, Levin LA, et al. . Beta 2-adrenergic receptors are expressed by glia in vivo in the normal and injured central nervous system in the rat, rabbit, and human. J Neurosci. (1995) 15:152–64. 10.1523/JNEUROSCI.15-01-00152.1995
    1. Feher LZ, Kalman J, Puskas LG, Gyulveszi G, Kitajka K, Penke B, et al. . Impact of haloperidol and risperidone on gene expression profile in the rat cortex. Neurochem Int. (2005) 47:271–80. 10.1016/j.neuint.2005.04.020
    1. Chan KKW, Tang F, Tham CCY, Young AL, Cheung CY. Retinal vasculature in glaucoma: a review. BMJ Open Ophthalmol. (2017) 1:e000032. 10.1136/bmjophth-2016-000032
    1. Borda E, Pascual J, Cossio P, Delavega M, Arana R, Sterinborda L. A circulating Igg in chagas-disease which binds to beta-adrenoceptors of myocardium and modulates their activity. Clin Exp Immunol. (1984) 57:679–86.
    1. Wallukat G, Wollenberger A. Effects of the serum gamma globulin fraction of patients with allergic asthma and dilated cardiomyopathy on chronotropic beta adrenoceptor function in cultured neonatal rat heart myocytes. Biomed Biochim Acta. (1987) 46:S634–9.
    1. Zhang L, Hu D, Shi X, Li J, Zeng W, Xu L, et al. . Autoantibodies against the myocardium beta 1-adrenergic and M2-muscarinic receptors in patients with heart failure. Zhonghua Nei Ke Za Zhi. (2001) 40:445–7.
    1. Karczewski P, Hempel P, Kunze R, Bimmler M. Agonistic autoantibodies to the alpha(1) -adrenergic receptor and the beta(2) -adrenergic receptor in Alzheimer's and vascular dementia. Scand J Immunol. (2012) 75:524–30. 10.1111/j.1365-3083.2012.02684.x
    1. Jonas JB, Gusek GC, Naumann GO. Optic disc morphometry in chronic primary open-angle glaucoma. I. Morphometric intrapapillary characteristics. Graefes Arch Clin Exp Ophthalmol. (1988) 226:522–30. 10.1007/BF02169199
    1. Grus FH, Joachim SC, Hoffmann EM, Pfeiffer N. Complex autoantibody repertoires in patients with glaucoma. Mol Vis. (2004) 10:132–7.
    1. Joachim SC, Pfeiffer N, Grus FH. Autoantibodies in patients with glaucoma: a comparison of IgG serum antibodies against retinal, optic nerve, and optic nerve head antigens. Graefes Arch Clin Exp Ophthalmol. (2005) 243:817–23. 10.1007/s00417-004-1094-5
    1. Reichelt J, Joachim SC, Pfeiffer N, Grus FH. Analysis of autoantibodies against human retinal antigens in sera of patients with glaucoma and ocular hypertension. Curr Eye Res. (2008) 33:253–61. 10.1080/02713680701871157
    1. Grieshaber MC, Mozaffarieh M, Flammer J. What is the link between vascular dysregulation and glaucoma? Surv Ophthalmol. (2007) 52(Suppl 2):S144–54. 10.1016/j.survophthal.2007.08.010
    1. Fick A, Junemann A, Michalke B, Lucio M, Hohberger B. Levels of serum trace elements in patients with primary open-angle glaucoma. J Trace Elem Med Biol. (2019) 53:129–34. 10.1016/j.jtemb.2019.02.006
    1. Brubaker RF. Flow of aqueous humor in humans [The Friedenwald Lecture]. Invest Ophthalmol Vis Sci. (1991) 32:3145–66.
    1. Topper JE, Brubaker RF. Effects of timolol, epinephrine, and acetazolamide on aqueous flow during sleep. Invest Ophthalmol Vis Sci. (1985) 26:1315–9.
    1. Crook RB, Takahashi K, Mead A, Dunn JJ, Sears ML. The role of NaKCl cotransport in blood-to-aqueous chloride fluxes across rabbit ciliary epithelium. Invest Ophthalmol Vis Sci. (2000) 41:2574–83.
    1. Hochgesand DH, Dunn JJ, Crook RB. Catecholaminergic regulation of Na-K-Cl cotransport in pigmented ciliary epithelium: differences between PE and NPE. Exp Eye Res. (2001) 72:1–12. 10.1006/exer.2000.0927
    1. Larsson LI, Rettig ES, Brubaker RF. Aqueous flow in open-angle glaucoma. Arch Ophthalmol. (1995) 113:283–6. 10.1001/archopht.1995.01100030037018
    1. Jampel HD, Lynch MG, Brown RH, Kuhar MJ, De Souza EB. Beta-adrenergic receptors in human trabecular meshwork. Identification and autoradiographic localization. Invest Ophthalmol Vis Sci. (1987) 28:772–9.
    1. Wax MB, Molinoff PB, Alvarado J, Polansky J. Characterization of beta-adrenergic receptors in cultured human trabecular cells and in human trabecular meshwork. Invest Ophthalmol Vis Sci. (1989) 30:51–7.
    1. O'donnell ME, Brandt JD, Curry FR. Na-K-Cl cotransport regulates intracellular volume and monolayer permeability of trabecular meshwork cells. Am J Physiol. (1995) 268:C1067–74. 10.1152/ajpcell.1995.268.4.C1067
    1. Putney LK, Vibat CR, O'donnell ME. Intracellular Cl regulates Na-K-Cl cotransport activity in human trabecular meshwork cells. Am J Physiol. (1999) 277:C373–83. 10.1152/ajpcell.1999.277.3.C373
    1. Al-Aswad LA, Gong H, Lee D, O'donnell ME, Brandt JD, Ryan WJ, et al. . Effects of Na-K-2Cl cotransport regulators on outflow facility in calf and human eyes in vitro. Invest Ophthalmol Vis Sci. (1999) 40:1695–701.
    1. Group CN-TGS. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am J Ophthalmol. (1998) 126:498–505. 10.1016/S0002-9394(98)00272-4
    1. Delaey C, Van De Voorde J. Regulatory mechanisms in the retinal and choroidal circulation. Ophthalmic Res. (2000) 32:249–56. 10.1159/000055622
    1. Nakazawa T, Sato A, Mori A, Saito M, Sakamoto K, Nakahara T, et al. . Beta-adrenoceptor-mediated vasodilation of retinal blood vessels is reduced in streptozotocin-induced diabetic rats. Vascul Pharmacol. (2008) 49:77–83. 10.1016/j.vph.2008.06.001
    1. Mori A, Nakahara T, Sakamoto K, Ishii K. Role of beta3-adrenoceptors in regulation of retinal vascular tone in rats. Naunyn Schmiedebergs Arch Pharmacol. (2011) 384:603–8. 10.1007/s00210-011-0682-2
    1. Fuchsjager-Mayrl G, Wally B, Georgopoulos M, Rainer G, Kircher K, Buehl W, et al. . Ocular blood flow and systemic blood pressure in patients with primary open-angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci. (2004) 45:834–9. 10.1167/iovs.03-0461
    1. Smith GM, Miller RH. Immature type-1 astrocytes suppress glial scar formation, are motile and interact with blood vessels. Brain Res. (1991) 543:111–22. 10.1016/0006-8993(91)91054-5
    1. Sutin J, Griffith R. Beta-adrenergic receptor blockade suppresses glial scar formation. Exp Neurol. (1993) 120:214–22. 10.1006/exnr.1993.1056
    1. Jassim AH, Inman DM. Evidence of hypoxic glial cells in a model of ocular hypertension. Invest Ophthalmol Vis Sci. (2019) 60:1–15. 10.1167/iovs.18-24977
    1. Gibbs ME, Hutchinson DS, Summers RJ. Role of β-adrenoceptors in memory consolidation: β3-adrenoceptors act on glucose uptake and β2-adrenoceptors on glycogenolysis. Neuropsychopharmacology. (2008) 33:2384–97. 10.1038/sj.npp.1301629
    1. Catus SL, Gibbs ME, Sato M, Summers RJ, Hutchinson DS. Role of β-adrenoceptors in glucose uptake in astrocytes using β-adrenoceptor knockout mice. Br J Pharmacol. (2011) 162:1700–15. 10.1111/j.1476-5381.2010.01153.x
    1. Maragakis NJ, Rothstein JD. Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol. (2006) 2:679–89. 10.1038/ncpneuro0355
    1. Steele ML, Robinson SR. Reactive astrocytes give neurons less support: implications for Alzheimer's disease. Neurobiol Aging. (2012) 33:423.e1–13. 10.1016/j.neurobiolaging.2010.09.018
    1. Yaniv G, Twig G, Shor DB, Furer A, Sherer Y, Mozes O, et al. . A volcanic explosion of autoantibodies in systemic lupus erythematosus: a diversity of 180 different antibodies found in SLE patients. Autoimmun Rev. (2015) 14:75–9. 10.1016/j.autrev.2014.10.003
    1. Wenzel K, Haase H, Wallukat G, Derer W, Bartel S, Homuth V, et al. . Potential relevance of alpha(1)-adrenergic receptor autoantibodies in refractory hypertension. PLoS ONE. (2008) 3:e3742. 10.1371/journal.pone.0003742
    1. Hempel P, Karczewski P, Kohnert KD, Raabe J, Lemke B, Kunze R, et al. . Sera from patients with type 2 diabetes contain agonistic autoantibodies against G protein-coupled receptors. Scand J Immunol. (2009) 70:159–60. 10.1111/j.1365-3083.2009.02280.x
    1. Wallukat GNE, Müller J, Brinckmann R, Schimke J, Kunze R. The Pathophysiological Role of Autoantibodies Directed to G-Protein Coupled Receptors and Therapeutic Strategies of Antibody Removal. Lengerich: Pabst Science Publishers; (2002).
    1. Jahns R, Boivin V, Hein L, Triebel S, Angermann CE, Ertl G, et al. . Direct evidence for a beta(1)-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. J Clin Invest. (2004) 113:1419–29. 10.1172/JCI200420149
    1. Muller J, Wallukat G, Dandel M, Bieda H, Brandes K, Spiegelsberger S, et al. . Immunoglobulin adsorption in patients with idiopathic dilated cardiomyopathy. Circulation. (2000) 101:385–91. 10.1161/01.CIR.101.4.385
    1. Leske MC, Heijl A, Hussein M, Bengtsson B, Hyman L, Komaroff E, et al. . Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol. (2003) 121:48–56. 10.1001/archopht.121.1.48
    1. Fel AAE, Le Jeunne C. Indications et complications des corticoïdes en ophtalmologie. Presse Med. (2012) 41:414–421. 10.1016/j.lpm.2012.02.001
    1. Carli L, Tani C, Querci F, Della Rossa A, Vagnani S, Baldini C, et al. . Analysis of the prevalence of cataracts and glaucoma in systemic lupus erythematosus and evaluation of the rheumatologists' practice for the monitoring of glucocorticoid eye toxicity. Clin Rheumatol. (2013) 32:1071–3. 10.1007/s10067-013-2214-6

Source: PubMed

Подписаться