Altered Functional Connectivity Strength at Rest in Medication-Free Obsessive-Compulsive Disorder

Dan Lv, Yangpan Ou, Yuhua Wang, Jidong Ma, Chuang Zhan, Ru Yang, Yunhui Chen, Tinghuizi Shang, Cuicui Jia, Lei Sun, Guangfeng Zhang, Zhenghai Sun, Jinyang Li, Xiaoping Wang, Wenbin Guo, Ping Li, Dan Lv, Yangpan Ou, Yuhua Wang, Jidong Ma, Chuang Zhan, Ru Yang, Yunhui Chen, Tinghuizi Shang, Cuicui Jia, Lei Sun, Guangfeng Zhang, Zhenghai Sun, Jinyang Li, Xiaoping Wang, Wenbin Guo, Ping Li

Abstract

Background: Previous studies explored the whole-brain functional connectome using the degree approach in patients with obsessive-compulsive disorder (OCD). However, whether the altered degree values can be used to discriminate OCD from healthy controls (HCs) remains unclear.

Methods: A total of 40 medication-free patients with OCD and 38 HCs underwent a resting-state functional magnetic resonance imaging (rs-fMRI) scan. Data were analyzed with the degree approach and a support vector machine (SVM) classifier.

Results: Patients with OCD showed increased degree values in the left thalamus and left cerebellum Crus I and decreased degree values in the left dorsolateral prefrontal cortex, right precuneus, and left postcentral gyrus. SVM classification analysis indicated that the increased degree value in the left thalamus is a marker of OCD, with an acceptable accuracy of 88.46%, sensitivity of 87.50%, and specificity of 89.47%.

Conclusion: Altered degree values within and outside the cortical-striatal-thalamic-cortical (CSTC) circuit may cocontribute to the pathophysiology of OCD. Increased degree values of the left thalamus can be used as a future marker for OCD understanding-classification.

Trial registration: ClinicalTrials.gov NCT02421315.

Conflict of interest statement

All authors declare no conflict of interest.

Copyright © 2021 Dan Lv et al.

Figures

Figure 1
Figure 1
Brain regions with abnormal degree values in patients with OCD. t values from two-sample t tests with p < 0.05 (GRF corrected). Red denotes increased degree values; blue denotes decreased degree values. OCD = obsessive-compulsive disorder; GRF = Gaussian random field; L = left; R = right.
Figure 2
Figure 2
Accuracy of SVM using the five brain regions with abnormal degree values to separate OCD from HCs. The SVM result showed that the highest accuracy is 5. 1 = left cerebellum Crus I, 2 = right precuneus, 3 = left dorsolateral prefrontal cortex, 4 = left postcentral gyrus, and 5 = left thalamus. SVM = support vector machine; OCD = obsessive-compulsive disorder; HCs = health controls.
Figure 3
Figure 3
Visualization of SVM results for discriminating patients from controls using the degree values of the left thalamus. (a) 3D view of the classified accuracy with the best parameters. (b) Classified map of the degree values of the left thalamus. log2c and log2g mean the range and step size of the given parameters c and g (c and g are the parameters of the kernel functions in SVM training). The figure in (b) means the sensitivity and specificity of the SVM model. The horizontal axis conveys the predicted classification of each subject, and the vertical axis conveys the correct classification of each subject. SVM = support vector machine.

References

    1. Koran L. M., Bromberg D., Hornfeldt C. S., Shepski J. C., Wang S., Hollander E. Extended-release fluvoxamine and improvements in quality of life in patients with obsessive-compulsive disorder. Comprehensive Psychiatry. 2010;51(4):373–379. doi: 10.1016/j.comppsych.2009.10.001.
    1. Ruscio A. M., Stein D. J., Chiu W. T., Kessler R. C. The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Molecular Psychiatry. 2010;15(1):53–63. doi: 10.1038/mp.2008.94.
    1. Chen Y., Meng Z., Zhang Z., et al. The right thalamic glutamate level correlates with functional connectivity with right dorsal anterior cingulate cortex/middle occipital gyrus in unmedicated obsessive-compulsive disorder: a combined fMRI and1H-MRS study. The Australian and New Zealand Journal of Psychiatry. 2019;53(3):207–218. doi: 10.1177/0004867418806370.
    1. Gao J., Zhou Y., Yang X., et al. Abnormalities within and beyond the cortico-striato-thalamo-cortical circuitry in medication-free patients with OCD revealed by the fractional amplitude of low-frequency fluctuations and resting-state functional connectivity. Neuroscience Letters. 2019;712:p. 134449. doi: 10.1016/j.neulet.2019.134449.
    1. Haynes W. I. A., Clair A. H., Fernandez-Vidal S., Gholipour B., Morgieve M., Mallet L. Altered anatomical connections of associative and limbic cortico-basal-ganglia circuits in obsessive-compulsive disorder. European Psychiatry. 2018;51:1–8. doi: 10.1016/j.eurpsy.2018.01.005.
    1. Zhao Q., Xu T., Wang Y., et al. Limbic cortico-striato-thalamo-cortical functional connectivity in drug-naïve patients of obsessive-compulsive disorder. Psychological Medicine. 2021;51(1):70–82. doi: 10.1017/s0033291719002988.
    1. Hao H., Chen C., Mao W., et al. Alterations in resting-state local functional connectivity in obsessive- compulsive disorder. Journal of Affective Disorders. 2019;245:113–119. doi: 10.1016/j.jad.2018.10.112.
    1. Tang W., Zhu Q., Gong X., Zhu C., Wang Y., Chen S. Cortico-striato-thalamo-cortical circuit abnormalities in obsessive-compulsive disorder: a voxel-based morphometric and fMRI study of the whole brain. Behavioural Brain Research. 2016;313:17–22. doi: 10.1016/j.bbr.2016.07.004.
    1. Zhu J., Li J., Han Y., Liu W. Relationship between symptom dimensions and white matter alterations in untreated patients with obsessive-compulsive disorder: a diffusion tensor imaging study. Neuroreport. 2020;31(12):891–896. doi: 10.1097/WNR.0000000000001460.
    1. Afshani F., Shalbaf A., Shalbaf R., Sleigh J. Frontal-temporal functional connectivity of EEG signal by standardized permutation mutual information during anesthesia. Cognitive Neurodynamics. 2019;13(6):531–540. doi: 10.1007/s11571-019-09553-w.
    1. Fan J., Zhong M., Zhu X., et al. Resting-state functional connectivity between right anterior insula and right orbital frontal cortex correlate with insight level in obsessive-compulsive disorder. Neuroimage Clin. 2017;15:1–7. doi: 10.1016/j.nicl.2017.04.002.
    1. Lee S. W., Song H., Jang T. Y., Cha H., Kim E., Chang Y., et al. Aberrant functional connectivity of neural circuits associated with thought-action fusion in patients with obsessive-compulsive disorder. Psychological Medicine. 2020:1–10. doi: 10.1017/s0033291720003980.
    1. Li K., Zhang H., Yang Y., et al. Abnormal functional network of the thalamic subregions in adult patients with obsessive-compulsive disorder. Behavioural Brain Research. 2019;371:p. 111982. doi: 10.1016/j.bbr.2019.111982.
    1. Poldrack R. A. Region of interest analysis for fMRI. Social Cognitive and Affective Neuroscience. 2007;2(1):67–70. doi: 10.1093/scan/nsm006.
    1. Wang J. H., Zuo X. N., Gohel S., Milham M. P., Biswal B. B., He Y. Graph theoretical analysis of functional brain networks: test-retest evaluation on short- and long-term resting-state functional MRI data. PLoS One. 2011;6(7, article e21976) doi: 10.1371/journal.pone.0021976.
    1. Chen C., Wang H. L., Wu S. H., et al. Abnormal degree centrality of bilateral putamen and left superior frontal gyrus in schizophrenia with auditory Hallucinations. Chinese Medical Journal. 2015;128(23):3178–3184. doi: 10.4103/0366-6999.170269.
    1. Guo Z., Liu X., Hou H., Wei F., Liu J., Chen X. Abnormal degree centrality in Alzheimer's disease patients with depression: a resting-state functional magnetic resonance imaging study. Experimental Gerontology. 2016;79:61–66. doi: 10.1016/j.exger.2016.03.017.
    1. Chen T., Chen Z., Gong Q. White matter-based structural brain network of major depression. Advances in Experimental Medicine and Biology. 2021;1305:35–55. doi: 10.1007/978-981-33-6044-0_3.
    1. Zhu J., Zhao W., Zhang C., et al. Disrupted topological organization of the motor execution network in alcohol dependence. Psychiatry Research: Neuroimaging. 2018;280:1–8. doi: 10.1016/j.pscychresns.2018.08.006.
    1. Jiang Y., Yao D., Zhou J., et al. Characteristics of disrupted topological organization in white matter functional connectome in schizophrenia. Psychological Medicine. 2020:1–11. doi: 10.1017/S0033291720003141.
    1. Beucke J. C., Sepulcre J., Talukdar T., et al. Abnormally high degree connectivity of the orbitofrontal cortex in obsessive-compulsive disorder. JAMA Psychiatry. 2013;70(6):619–629. doi: 10.1001/jamapsychiatry.2013.173.
    1. Gottlich M., Kramer U. M., Kordon A., Hohagen F., Zurowski B. Resting-state connectivity of the amygdala predicts response to cognitive behavioral therapy in obsessive compulsive disorder. Biological Psychology. 2015;111:100–109. doi: 10.1016/j.biopsycho.2015.09.004.
    1. Huang S., Cai N., Pacheco P. P., Narrandes S., Wang Y., Xu W. Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics & Proteomics. 2018;15(1)
    1. Zhang Y., Wang S., Xia K., Jiang Y., Qian P. Alzheimer's disease multiclass diagnosis via multimodal neuroimaging embedding feature selection and fusion. Information Fusion. 2021;66:170–183. doi: 10.1016/j.inffus.2020.09.002.
    1. Zhang N., Ruan S., Lebonvallet S., Liao Q., Zhu Y. Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation. Computer Vision and Image Understanding. 2011;115(2):256–269. doi: 10.1016/j.cviu.2010.09.007.
    1. Menze B. H., Jakab A., Bauer S., et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) IEEE Transactions on Medical Imaging. 2015;34(10):1993–2024. doi: 10.1109/TMI.2014.2377694.
    1. Yan C. G., Wang X. D., Zuo X. N., Zang Y. F. DPABI: Data Processing & Analysis for (resting-state) Brain Imaging. Neuroinformatics. 2016;14(3):339–351. doi: 10.1007/s12021-016-9299-4.
    1. Ben Simon E., Maron-Katz A., Lahav N., Shamir R., Hendler T. Tired and misconnected: a breakdown of brain modularity following sleep deprivation. Human Brain Mapping. 2017;38(6):3300–3314. doi: 10.1002/hbm.23596.
    1. Glasser M. F., Coalson T. S., Bijsterbosch J. D., et al. Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data. NeuroImage. 2018;181:692–717. doi: 10.1016/j.neuroimage.2018.04.076.
    1. Power J. D., Barnes K. A., Snyder A. Z., Schlaggar B. L., Petersen S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage. 2012;59(3):2142–2154. doi: 10.1016/j.neuroimage.2011.10.018.
    1. Buckner R. L., Sepulcre J., Talukdar T., et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease. The Journal of Neuroscience. 2009;29(6):1860–1873. doi: 10.1523/JNEUROSCI.5062-08.2009.
    1. Su Q., Yao D., Jiang M., et al. Increased functional connectivity strength of right inferior temporal gyrus in first-episode, drug-naive somatization disorder. The Australian and New Zealand Journal of Psychiatry. 2015;49(1):74–81. doi: 10.1177/0004867414553949.
    1. Weissenbacher A., Kasess C., Gerstl F., Lanzenberger R., Moser E., Windischberger C. Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. NeuroImage. 2009;47(4):1408–1416. doi: 10.1016/j.neuroimage.2009.05.005.
    1. Poldrack R. A., Huckins G., Varoquaux G. Establishment of best practices for evidence for prediction: a review. JAMA Psychiatry. 2020;77(5):534–540. doi: 10.1001/jamapsychiatry.2019.3671.
    1. Scheinost D., Noble S., Horien C., et al. Ten simple rules for predictive modeling of individual differences in neuroimaging. NeuroImage. 2019;193:35–45. doi: 10.1016/j.neuroimage.2019.02.057.
    1. Calzà J., Gürsel D. A., Schmitz-Koep B., et al. Altered cortico-striatal functional connectivity during resting state in obsessive-compulsive disorder. Frontiers in Psychiatry. 2019;10:p. 319. doi: 10.3389/fpsyt.2019.00319.
    1. Dogan B., Ertekin E., Turkdogan F. T., Memis C. O., Sevincok L. Cortico-thalamo-striatal circuit components’ volumes and their correlations differ significantly among patients with obsessive–compulsive disorder: a case–control MRI study. Psychiatry and Clinical Psychopharmacology. 2019;29(2):162–170. doi: 10.1080/24750573.2019.1583481.
    1. Hou J. M., Zhao M., Zhang W., et al. Resting-state functional connectivity abnormalities in patients with obsessive-compulsive disorder and their healthy first-degree relatives. Journal of Psychiatry & Neuroscience. 2014;39(5):304–311. doi: 10.1503/jpn.130220.
    1. Hu X., du M., Chen L., et al. Meta-analytic investigations of common and distinct grey matter alterations in youths and adults with obsessive-compulsive disorder. Neuroscience and Biobehavioral Reviews. 2017;78:91–103. doi: 10.1016/j.neubiorev.2017.04.012.
    1. Yang X., Hu X., Tang W., et al. Intrinsic brain abnormalities in drug-naive patients with obsessive-compulsive disorder: a resting-state functional MRI study. Journal of Affective Disorders. 2019;245:861–868. doi: 10.1016/j.jad.2018.11.080.
    1. Cabeza R., Anderson N. D., Locantore J. K., McIntosh A. R. Aging gracefully: compensatory brain activity in high-performing older adults. NeuroImage. 2002;17(3):1394–1402. doi: 10.1006/nimg.2002.1280.
    1. Grady C., Mcintosh A., Craik F. Task-related activity in prefrontal cortex and its relation to recognition memory performance in young and old adults. Neuropsychologia. 2005;43(10):1466–1481. doi: 10.1016/j.neuropsychologia.2004.12.016.
    1. Hu X., Liu Q., Li B., et al. Multivariate pattern analysis of obsessive-compulsive disorder using structural neuroanatomy. European Neuropsychopharmacology. 2016;26(2):246–254. doi: 10.1016/j.euroneuro.2015.12.014.
    1. Li P., Yang X., Greenshaw A. J., et al. The effects of cognitive behavioral therapy on resting-state functional brain network in drug-naive patients with obsessive-compulsive disorder. Brain and Behavior: A Cognitive Neuroscience Perspective. 2018;8(5, article e00963) doi: 10.1002/brb3.963.
    1. Yang X., Luo J., Zhong Z., et al. Abnormal regional homogeneity in patients with obsessive-compulsive disorder and their unaffected siblings: a resting-state fMRI study. Frontiers in Psychiatry. 2019;10:p. 452. doi: 10.3389/fpsyt.2019.00452.
    1. Dittrich W. H., Johansen T. Cognitive deficits of executive functions and decision-making in obsessive-compulsive disorder. Scandinavian Journal of Psychology. 2013;54(5):393–400. doi: 10.1111/sjop.12066.
    1. Miquel M., Nicola S. M., Gil-Miravet I., Guarque-Chabrera J., Sanchez-Hernandez A. A working hypothesis for the role of the cerebellum in impulsivity and compulsivity. Frontiers in Behavioral Neuroscience. 2019;13:p. 99. doi: 10.3389/fnbeh.2019.00099.
    1. Ping L., Su-Fang L., Hai-Ying H., et al. Abnormal spontaneous neural activity in obsessive-compulsive disorder: a resting-state functional magnetic resonance imaging study. PLoS One. 2013;8(6, article e67262) doi: 10.1371/journal.pone.0067262.
    1. Zhang H., Wang B., Li K., et al. Altered functional connectivity between the cerebellum and the cortico-striato-thalamo-cortical circuit in obsessive-compulsive disorder. Frontiers in Psychiatry. 2019;10:p. 522. doi: 10.3389/fpsyt.2019.00522.
    1. Lv D., Ou Y., Chen Y., et al. Increased cerebellar–default-mode network connectivity at rest in obsessive–compulsive disorder. European Archives of Psychiatry and Clinical Neuroscience. 2020;270(8):1015–1024. doi: 10.1007/s00406-019-01070-5.
    1. Sha Z., Edmiston E. K., Versace A., et al. Functional Disruption of Cerebello-thalamo-cortical Networks in Obsessive- Compulsive Disorder. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020;5(4):438–447. doi: 10.1016/j.bpsc.2019.12.002.
    1. Zhang S., Li C. S. Functional connectivity mapping of the human precuneus by resting state fMRI. NeuroImage. 2012;59(4):3548–3562. doi: 10.1016/j.neuroimage.2011.11.023.
    1. Rasgon A., Lee W. H., Leibu E., et al. Neural correlates of affective and non-affective cognition in obsessive compulsive disorder: a meta-analysis of functional imaging studies. European Psychiatry. 2017;46:25–32. doi: 10.1016/j.eurpsy.2017.08.001.
    1. Yan C. G., Cheung B., Kelly C., et al. A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. NeuroImage. 2013;76:183–201. doi: 10.1016/j.neuroimage.2013.03.004.
    1. Russo M., Naro A., Mastroeni C., et al. Obsessive-compulsive disorder: a "sensory-motor" problem? International Journal of Psychophysiology. 2014;92(2):74–78. doi: 10.1016/j.ijpsycho.2014.02.007.
    1. Deng K., Qi T., Xu J., et al. Reduced interhemispheric functional connectivity in obsessive-compulsive disorder patients. Frontiers in Psychiatry. 2019;10:p. 418. doi: 10.3389/fpsyt.2019.00418.
    1. Niu Q., Yang L., Song X., et al. Abnormal resting-state brain activities in patients with first-episode obsessive-compulsive disorder. Neuropsychiatric Disease and Treatment. 2017;13:507–513. doi: 10.2147/NDT.S117510.
    1. Morein-Zamir S., Voon V., Dodds C. M., et al. Divergent subcortical activity for distinct executive functions: stopping and shifting in obsessive compulsive disorder. Psychological Medicine. 2016;46(4):829–840. doi: 10.1017/S0033291715002330.
    1. Shin D. J., Jung W. H., He Y., et al. The effects of pharmacological treatment on functional brain connectome in obsessive-compulsive disorder. Biological Psychiatry. 2014;75(8):606–614. doi: 10.1016/j.biopsych.2013.09.002.
    1. Button K. S., Ioannidis J. P., Mokrysz C., et al. Power failure: why small sample size undermines the reliability of neuroscience. Nature Reviews. Neuroscience. 2013;14(5):365–376. doi: 10.1038/nrn3475.
    1. Ravindran A., Richter M., Jain T., Ravindran L., Rector N., Farb N. Functional connectivity in obsessive-compulsive disorder and its subtypes. Psychological Medicine. 2020;50(7):1–9. doi: 10.1017/s0033291719001090.
    1. Thorsen A. L., Hagland P., Radua J., et al. Emotional processing in obsessive-compulsive disorder: a systematic review and meta-analysis of 25 functional neuroimaging studies. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3(6):563–571. doi: 10.1016/j.bpsc.2018.01.009.
    1. Guo W., Yao D., Jiang J., et al. Abnormal default-mode network homogeneity in first-episode, drug-naive schizophrenia at rest. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 2014;49:16–20. doi: 10.1016/j.pnpbp.2013.10.021.
    1. Li J., Kong R., Liégeois R., et al. Global signal regression strengthens association between resting-state functional connectivity and behavior. NeuroImage. 2019;196:126–141. doi: 10.1016/j.neuroimage.2019.04.016.
    1. Cui Z., Gong G. The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features. NeuroImage. 2018;178:622–637. doi: 10.1016/j.neuroimage.2018.06.001.
    1. Kashyap R., Eng G. K., Bhattacharjee S., et al. Individual-fMRI-approaches reveal cerebellum and visual communities to be functionally connected in obsessive compulsive disorder. Scientific Reports. 2021;11(1):p. 1354. doi: 10.1038/s41598-020-80346-6.
    1. Uddin L. Q., Kelly A. M., Biswal B. B., et al. Network homogeneity reveals decreased integrity of default-mode network in ADHD. Journal of Neuroscience Methods. 2008;169(1):249–254. doi: 10.1016/j.jneumeth.2007.11.031.
    1. Chen Y., Ou Y., Lv D., et al. Altered network homogeneity of the default-mode network in drug-naive obsessive−compulsive disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 2019;93:77–83. doi: 10.1016/j.pnpbp.2019.03.008.

Source: PubMed

Подписаться