A Systematic Review of Investigations into Functional Brain Connectivity Following Spinal Cord Injury

Alkinoos Athanasiou, Manousos A Klados, Niki Pandria, Nicolas Foroglou, Kyriaki R Kavazidi, Konstantinos Polyzoidis, Panagiotis D Bamidis, Alkinoos Athanasiou, Manousos A Klados, Niki Pandria, Nicolas Foroglou, Kyriaki R Kavazidi, Konstantinos Polyzoidis, Panagiotis D Bamidis

Abstract

Background: Complete or incomplete spinal cord injury (SCI) results in varying degree of motor, sensory and autonomic impairment. Long-lasting, often irreversible disability results from disconnection of efferent and afferent pathways. How does this disconnection affect brain function is not so clear. Changes in brain organization and structure have been associated with SCI and have been extensively studied and reviewed. Yet, our knowledge regarding brain connectivity changes following SCI is overall lacking. Methods: In this study we conduct a systematic review of articles regarding investigations of functional brain networks following SCI, searching on PubMed, Scopus and ScienceDirect according to PRISMA-P 2015 statement standards. Results: Changes in brain connectivity have been shown even during the early stages of the chronic condition and correlate with the degree of neurological impairment. Connectivity changes appear as dynamic post-injury procedures. Sensorimotor networks of patients and healthy individuals share similar patterns but new functional interactions have been identified as unique to SCI networks. Conclusions: Large-scale, multi-modal, longitudinal studies on SCI patients are needed to understand how brain network reorganization is established and progresses through the course of the condition. The expected insight holds clinical relevance in preventing maladaptive plasticity after SCI through individualized neurorehabilitation, as well as the design of connectivity-based brain-computer interfaces and assistive technologies for SCI patients.

Keywords: brain connectivity; brain network; cortical connectivity; cortical network; maladaptive plasticity; network reorganization; sensorimotor network; spinal cord injury.

Figures

Figure 1
Figure 1
Flow diagram of the method followed through the systematic review according to PRISMA standards.

References

    1. Alam M., Rodrigues W., Pham B. N., Thakor N. V. (2016). Brain-machine interface facilitated neurorehabilitation via spinal stimulation after spinal cord injury: recent progress and future perspectives. Brain Res. 1646, 25–33. 10.1016/j.brainres.2016.05.039
    1. Anderson K. D., Acuff M. E., Arp B. G., Backus D., Chun S., Fisher K., et al. . (2011). United States (US) multi-center study to assess the validity and reliability of the Spinal Cord Independence Measure (SCIM III). Spinal Cord 49, 880–885. 10.1038/sc.2011.20
    1. Astolfi L., Bakardjian H., Cincotti F., Mattia D., Marciani M. G., De Vico Fallani F., et al. . (2007). Estimate of causality between independent cortical spatial patterns during movement volition in spinal cord injured patients. Brain Topogr. 19, 107–123. 10.1007/s10548-007-0018-1
    1. Astolfi L., Cincotti F., Mattia D., De Vico Fallani F., Vecchiato G., Salinari S., et al. (2010). Time-varying cortical connectivity estimation from noninvasive, high-resolution EEG recordings. J. Psychol. 24, 83–90. 10.1027/0269-8803/a000017
    1. Athanasiou A., Klados M. A., Foroglou N., Kavazidi K. R., Polyzoidis K., Bamidis P. D. (2016a). Reorganization of brain networks after spinal cord injury: a qualitative synthesis of the literature. Front. Hum. Neurosci. Conference Abstract: SAN2016 Meeting. 10.3389/conf.fnhum.2016.220.00036
    1. Athanasiou A., Klados M. A., Styliadis C., Foroglou N., Polyzoidis K., Bamidis P. D. (2016b). Investigating the role of α and β rhythms in functional motor networks. Neuroscience [Epub ahead of print]. 10.1016/j.neuroscience.2016.05.044
    1. Athanasiou A., Xygonakis I., Pandria N., Kartsidis P., Arfaras A., Kavazidi K. R., et al. . (2017). Towards rehabilitation robotics: off-the-shelf BCI control of anthropomorphic robotic arms. Biomed Res. Int. 2017:5708937. 10.1155/2017/5708937
    1. Chisholm A. E., Peters S., Borich M. R., Boyd L. A., Lam T. (2015). Short-term cortical plasticity associated with feedback-error learning after locomotor training in a patient with incomplete spinal cord injury. Phys. Ther. 95, 257–266. 10.2522/ptj.20130522
    1. De Vico Fallani F., Astolfi L., Cincotti F., Mattia D., Marciani M. G., Salinari S., et al. . (2007a). Cortical functional connectivity networks in normal and spinal cord injured patients: evaluation by graph analysis. Hum. Brain Mapp. 28, 1334–1346. 10.1002/hbm.20353
    1. De Vico Fallani F., Astolfi L., Cincotti F., Mattia D., Tocci A., Marciani M. G., et al. . (2007b). Extracting information from cortical connectivity patterns estimated from high resolution EEG recordings: a theoretical graph approach. Brain Topogr. 19, 125–136. 10.1007/s10548-007-0019-0
    1. De Vico Fallani F., Rodrigues F. A., da Fontoura Costa L., Astolfi L., Cincotti F., Mattia D., et al. . (2011). Multiple pathways analysis of brain functional networks from EEG signals: an application to real data. Brain Topogr. 23, 344–354. 10.1007/s10548-010-0152-z
    1. De Vico Fallani F., da Fontoura Costa L., Rodriguez F. A., Astolfi L., Vecchiato G., Toppi J., et al. . (2010). A graph-theoretical approach in brain functional networks. Possible implications in EEG studies. Nonlinear Biomed. Phys. 4:S8. 10.1186/1753-4631-4-S1-S8
    1. Freund P., Weiskopf N., Ashburner J., Wolf K., Sutter R., Altmann D. R., et al. . (2013). MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study. Lancet Neurol. 12, 873–881. 10.1016/S1474-4422(13)70146-7
    1. Hamedi M., Salleh S. H., Noor A. M. (2016). Electroencephalographic motor imagery brain connectivity analysis for BCI: a review. Neural Comput. 28, 999–1041. 10.1162/NECO_a_00838
    1. Hou J. M., Sun T. S., Xiang Z. M., Zhang J. Z., Zhang Z. C., Zhao M., et al. . (2014a). Alterations of resting-state regional and network-level neural function after acute spinal cord injury. Neuroscience 277, 446–454. 10.1016/j.neuroscience.2014.07.045
    1. Hou J. M., Yan R. B., Xiang Z. M., Zhang H., Liu J., Wu Y. T., et al. . (2014b). Brain sensorimotor system atrophy during the early stage of spinal cord injury in humans. Neuroscience 266, 208–215. 10.1016/j.neuroscience.2014.02.013
    1. Hou J. M., Xiang Z., Yan R., Zhao M., Wu Y., Zhong J., et al. . (2016). Motor recovery at 6 months after admission is related to structural and functional reorganization of the spine and brain in patients with spinal cord injury. Hum. Brain Mapp. 37, 2195–2209. 10.1002/hbm.23163
    1. Kaushal M., Oni-Orisan A., Chen G., Li W., Leschke J., Ward B. D., et al. . (2017a). Evaluation of whole-brain resting-state functional connectivity in spinal cord injury: a large-scale network analysis using network-based statistic. J. Neurotrauma 34, 1278–1282. 10.1089/neu.2016.4649
    1. Kaushal M., Oni-Orisan A., Chen G., Li W., Leschke J., Ward B. D., et al. . (2017b). Large-scale network analysis of whole-brain resting-state functional connectivity in spinal cord injury: a comparative study. Brain Connect. 7, 413–423. 10.1089/brain.2016.0468
    1. Latora V., Marchiori M. (2001). Efficient behavior of small-world networks. Phys. Rev. Lett. 87:198701. 10.1103/physrevlett.87.198701
    1. Mattia D., Cincotti F., Astolfi L., de Vico Fallani F., Scivoletto G., Marciani M. G., et al. . (2009). Motor cortical responsiveness to attempted movements in tetraplegia: evidence from neuroelectrical imaging. Clin. Neurophysiol. 120, 181–189. 10.1016/j.clinph.2008.09.023
    1. McHugh M. L. (2012). Interrater reliability: the kappa statistic. Biochem. Med. (Zagreb) 22, 276–282. 10.11613/bm.2012.031
    1. Meyer B. U., Röricht S., Woiciechowsky C. (1998). Topography of fibers in the human corpus callosum mediating interhemispheric inhibition between the motor cortices. Ann. Neurol. 43, 360–369. 10.1002/ana.410430314
    1. Min Y. S., Chang Y., Park J. W., Lee J. M., Cha J., Yang J. J., et al. . (2015a). Change of brain functional connectivity in patients with spinal cord injury: graph theory based approach. Ann. Rehabil. Med. 39, 374–383. 10.5535/arm.2015.39.3.374
    1. Min Y. S., Park J. W., Jin S. U., Jang K. E., Nam H. U., Lee Y. S., et al. . (2015b). Alteration of resting-state brain sensorimotor connectivity following spinal cord injury: a resting-state functional magnetic resonance imaging study. J. Neurotrauma 32, 1422–1427. 10.1089/neu.2014.3661
    1. Moher D., Shamseer L., Clarke M., Ghersi D., Liberati A., Petticrew M., et al. . (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 4:1. 10.1186/2046-4053-4-1
    1. Nardone R., Höller Y., Brigo F., Orioli A., Tezzon F., Schwenker K., et al. . (2015). Descending motor pathways and cortical physiology after spinal cord injury assessed by transcranial magnetic stimulation: a systematic review. Brain Res. 1619, 139–154. 10.1016/j.brainres.2014.09.036
    1. Nardone R., Höller Y., Brigo F., Seidl M., Christova M., Bergmann J., et al. . (2013). Functional brain reorganization after spinal cord injury: systematic review of animal and human studies. Brain Res. 1504, 58–73. 10.1016/j.brainres.2012.12.034
    1. Oni-Orisan A., Kaushal M., Li W., Leschke J., Ward B. D., Vedantam A., et al. . (2016). Alterations in cortical sensorimotor connectivity following complete cervical spinal cord injury: a prospective resting-state fMRI study. PLoS One 11:e0150351. 10.1371/journal.pone.0150351
    1. Pascoal-Faria P., Yalcin N., Fregni F. (2015). Neural markers of neuropathic pain associated with maladaptive plasticity in spinal cord injury. Pain Pract. 15, 371–377. 10.1111/papr.12237
    1. Pazzaglia M., Molinari M. (2016). The embodiment of assistive devices-from wheelchair to exoskeleton. Phys. Life Rev. 16, 163–175. 10.1016/j.plrev.2015.11.006
    1. Rădulescu A. R., Hannon E. R. (2017). Applying fMRI complexity analyses to the single subject: a case study for proposed neurodiagnostics. Neurocase 23, 120–137. 10.1080/13554794.2017.1316410
    1. Rao J. S., Liu Z., Zhao C., Wei R. H., Zhao W., Yang Z. Y., et al. . (2016). Longitudinal evaluation of functional connectivity variation in the monkey sensorimotor network induced by spinal cord injury. Acta Physiol. (Oxf) 217, 164–173. 10.1111/apha.12645
    1. Sinatra R., De Vico Fallani F., Astolfi L., Babiloni F., Cincotti F., Mattia D., et al. (2009). Cluster structure of functional networks estimated from high-resolution EEG data. Int. J. Bifurcat. Chaos. 19, 665–676. 10.1142/s0218127409023020
    1. Tidoni E., Tieri G., Aglioti S. M. (2015). Re-establishing the disrupted sensorimotor loop in deafferented and deefferented people: the case of spinal cord injuries. Neuropsychologia 79, 301–309. 10.1016/j.neuropsychologia.2015.06.029
    1. Vahdat S., Lungu O., Cohen-Adad J., Marchand-Pauvert V., Benali H., Doyon J. (2015). Simultaneous brain-cervical cord fMRI reveals intrinsic spinal cord plasticity during motor sequence learning. PLoS Biol. 13:e1002186. 10.1371/journal.pbio.1002186
    1. Watts D. J., Strogatz S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature 393, 440–442. 10.1038/30918
    1. Whiteneck G., Gassaway J., Dijkers M., Jha A. (2009). New approach to study the contents and outcomes of spinal cord injury rehabilitation: the SCIRehab project. J. Spinal Cord Med. 32, 251–259. 10.1080/10790268.2009.11760779
    1. Zalesky A., Fornito A., Bullmore E. T. (2010). Network-based statistic: identifying differences in brain networks. Neuroimage 53, 1197–1207. 10.1016/j.neuroimage.2010.06.041
    1. Zantedeschi M., Pazzaglia M. (2016). Commentary: non-invasive brain stimulation, a tool to revert maladaptive plasticity in neuropathic pain. Front. Hum. Neurosci. 10:544. 10.3389/fnhum.2016.00544
    1. Zarei M., Johansen-Berg H., Smith S., Ciccarelli O., Thompson A. J., Matthews P. M. (2006). Functional anatomy of interhemispheric cortical connections in the human brain. J. Anat. 209, 311–320. 10.1111/j.1469-7580.2006.00615.x
    1. Zhu L., Wu G., Zhou X., Li J., Wen Z., Lin F. (2015). Altered spontaneous brain activity in patients with acute spinal cord injury revealed by resting-state functional MRI. PLoS One 10:e0118816. 10.1371/journal.pone.0118816

Source: PubMed

Подписаться