Temporal Evolution of Myocardial Hemorrhage and Edema in Patients After Acute ST-Segment Elevation Myocardial Infarction: Pathophysiological Insights and Clinical Implications

David Carrick, Caroline Haig, Nadeem Ahmed, Samuli Rauhalammi, Guillaume Clerfond, Jaclyn Carberry, Ify Mordi, Margaret McEntegart, Mark C Petrie, Hany Eteiba, Stuart Hood, Stuart Watkins, M Mitchell Lindsay, Ahmed Mahrous, Paul Welsh, Naveed Sattar, Ian Ford, Keith G Oldroyd, Aleksandra Radjenovic, Colin Berry, David Carrick, Caroline Haig, Nadeem Ahmed, Samuli Rauhalammi, Guillaume Clerfond, Jaclyn Carberry, Ify Mordi, Margaret McEntegart, Mark C Petrie, Hany Eteiba, Stuart Hood, Stuart Watkins, M Mitchell Lindsay, Ahmed Mahrous, Paul Welsh, Naveed Sattar, Ian Ford, Keith G Oldroyd, Aleksandra Radjenovic, Colin Berry

Abstract

Background: The time course and relationships of myocardial hemorrhage and edema in patients after acute ST-segment elevation myocardial infarction (STEMI) are uncertain.

Methods and results: Patients with ST-segment elevation myocardial infarction treated by primary percutaneous coronary intervention underwent cardiac magnetic resonance imaging on 4 occasions: at 4 to 12 hours, 3 days, 10 days, and 7 months after reperfusion. Myocardial edema (native T2) and hemorrhage (T2*) were measured in regions of interest in remote and injured myocardium. Myocardial hemorrhage was taken to represent a hypointense infarct core with a T2* value <20 ms. Thirty patients with ST-segment elevation myocardial infarction (mean age 54 years; 25 [83%] male) gave informed consent. Myocardial hemorrhage occurred in 7 (23%), 13 (43%), 11 (33%), and 4 (13%) patients at 4 to 12 hours, 3 days, 10 days, and 7 months, respectively, consistent with a unimodal pattern. The corresponding median amounts of myocardial hemorrhage (percentage of left ventricular mass) during the first 10 days after myocardial infarction were 2.7% (interquartile range [IQR] 0.0-5.6%), 7.0% (IQR 4.9-7.5%), and 4.1% (IQR 2.6-5.5%; P<0.001). Similar unimodal temporal patterns were observed for myocardial edema (percentage of left ventricular mass) in all patients (P=0.001) and for infarct zone edema (T2, in ms: 62.1 [SD 2.9], 64.4 [SD 4.9], 65.9 [SD 5.3]; P<0.001) in patients without myocardial hemorrhage. Alternatively, in patients with myocardial hemorrhage, infarct zone edema was reduced at day 3 (T2, in ms: 51.8 [SD 4.6]; P<0.001), depicting a bimodal pattern. Left ventricular end-diastolic volume increased from baseline to 7 months in patients with myocardial hemorrhage (P=0.001) but not in patients without hemorrhage (P=0.377).

Conclusions: The temporal evolutions of myocardial hemorrhage and edema are unimodal, whereas infarct zone edema (T2 value) has a bimodal pattern. Myocardial hemorrhage is prognostically important and represents a target for therapeutic interventions that are designed to preserve vascular integrity following coronary reperfusion.

Clinical trial registration: URL: https://ichgcp.net/clinical-trials-registry/NCT02072850" title="See in ClinicalTrials.gov">NCT02072850.

Keywords: magnetic resonance imaging; myocardial edema; myocardial hemorrhage; myocardial infarction; pathophysiology; reperfusion injury.

© 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

Figures

Figure 1
Figure 1
Study flow diagram. CMR indicates cardiac magnetic resonance; STEMI, ST‐segment elevation myocardial infarction.
Figure 2
Figure 2
Cardiac magnetic resonance T2 mapping, T2* mapping, and contrast‐enhanced images at 4 time points after reperfusion from patients without (A) and with (B) myocardial hemorrhage, following emergency percutaneous coronary intervention (Data S2). MRI indicates magnetic resonance imaging.
Figure 3
Figure 3
A, Time course of myocardial edema, reflected by T2 relaxation times (in ms) in patients with ST‐segment elevation myocardial infarction with or without myocardial hemorrhage during the first 10 days after ischemia–reperfusion (Data S2). Edema (T2 values) evolved with a bimodal time course in patients with myocardial hemorrhage but with a unimodal time course in patients without hemorrhage. The red continuous red line links edema T2 relaxation times in the infarct core. The interrupted blue line links edema T2 relaxation times in the infarct zone. Because cardiac magnetic resonance scans were not obtained before reperfusion, the baseline mean T2 values are imputed T2 values at the midventricular level obtained from age‐matched healthy volunteers. B, The amount of myocardial edema (% LV mass) evolved with a unimodal time course to a maximum on day 3. C, Amount of myocardial hemorrhage in the subgroup of patients with hemorrhage. In a linear mixed‐effects model, the amount of myocardial hemorrhage across the time points of assessment was not associated with infarct size (P=1.0). %LV mass indicates percentage of left ventricular mass.

References

    1. Betgem RP, de Waard GA, Nijveldt R, Beek AM, Escaned J, van Royen N. Intramyocardial haemorrhage after acute myocardial infarction. Nat Rev Cardiol. 2015;12:156–167.
    1. Kloner RA, Ganote CE, Jennings RB. The “no‐reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest. 1974;54:1496–1508.
    1. Jaffe R, Charron T, Puley G, Dick A, Strauss BH. Microvascular obstruction and the no‐reflow phenomenon after percutaneous coronary intervention. Circulation. 2008;117:3152–3156.
    1. Higginson LA, White F, Heggtveit HA, Sanders TM, Bloor CM, Covell JW. Determinants of myocardial hemorrhage after coronary reperfusion in the anesthetized dog. Circulation. 1982;65:62–69.
    1. Ganame J, Messalli G, Dymarkowski S, Rademakers FE, Desmet W, Van de Werf F, Bogaert J. Impact of myocardial haemorrhage on left ventricular function and remodelling in patients with reperfused acute myocardial infarction. Eur Heart J. 2009;30:1440–1449.
    1. Amabile N, Jacquier A, Shuhab A, Gaudart J, Bartoli JM, Paganelli F, Moulin G. Incidence, predictors, and prognostic value of intramyocardial hemorrhage lesions in ST elevation myocardial infarction. Catheter Cardiovasc Interv. 2012;79:1101–1108.
    1. Eitel I, Kubusch K, Strohm O, Desch S, Mikami Y, de Waha S, Gutberlet M, Schuler G, Friedrich MG, Thiele H. Prognostic value and determinants of a hypointense infarct core in T2‐weighted cardiac magnetic resonance in acute reperfused ST‐elevation‐myocardial infarction. Circ Cardiovasc Imaging. 2011;4:354–362.
    1. Husser O, Monmeneu JV, Sanchis J, Nunez J, Lopez‐Lereu MP, Bonanad C, Chaustre F, Gomez C, Bosch MJ, Hinarejos R, Chorro FJ, Riegger GA, Llacer A, Bodi V. Cardiovascular magnetic resonance‐derived intramyocardial hemorrhage after STEMI: influence on long‐term prognosis, adverse left ventricular remodeling and relationship with microvascular obstruction. Int J Cardiol. 2013;167:2047–2054.
    1. Bragadeesh T, Jayaweera AR, Pascotto M, Micari A, Le DE, Kramer CM, Epstein FH, Kaul S. Post‐ischaemic myocardial dysfunction (stunning) results from myofibrillar oedema. Heart. 2008;94:166–171.
    1. Heusch P, Nensa F, Heusch G. Is MRI really the gold standard for the quantification of salvage from myocardial infarction? Circ Res. 2015;117:222–224.
    1. Kim HW, Van Assche L, Jennings RB, Wince WB, Jensen CJ, Rehwald WG, Wendell DC, Bhatti L, Spatz DM, Parker MA, Jenista ER, Klem I, Crowley AL, Chen EL, Judd RM, Kim RJ. Relationship of T2‐weighted MRI myocardial hyperintensity and the ischemic area‐at‐risk. Circ Res. 2015;117:254–265.
    1. Aletras AH, Tilak GS, Natanzon A, Hsu LY, Gonzalez FM, Hoyt RF Jr, Arai AE. Retrospective determination of the area at risk for reperfused acute myocardial infarction with T2‐weighted cardiac magnetic resonance imaging: histopathological and displacement encoding with stimulated echoes (DENSE) functional validations. Circulation. 2006;113:1865–1870.
    1. Berry C, Kellman P, Mancini C, Chen MY, Bandettini WP, Lowrey T, Hsu LY, Aletras AH, Arai AE. Magnetic resonance imaging delineates the ischemic area at risk and myocardial salvage in patients with acute myocardial infarction. Circ Cardiovasc Imaging. 2010;3:527–535.
    1. Dall'Armellina E, Karia N, Lindsay AC, Karamitsos TD, Ferreira V, Robson MD, Kellman P, Francis JM, Forfar C, Prendergast BD, Banning AP, Channon KM, Kharbanda RK, Neubauer S, Choudhury RP. Dynamic changes of edema and late gadolinium enhancement after acute myocardial infarction and their relationship to functional recovery and salvage index. Circ Cardiovasc Imaging. 2011;4:228–236.
    1. Fernandez‐Jimenez R, Sanchez‐Gonzalez J, Aguero J, Garcia‐Prieto J, Lopez‐Martin GJ, Garcia‐Ruiz JM, Molina‐Iracheta A, Rossello X, Fernandez‐Friera L, Pizarro G, Garcia‐Alvarez A, Dall'Armellina E, Macaya C, Choudhury RP, Fuster V, Ibanez B. Myocardial edema after ischemia/reperfusion is not stable and follows a bimodal pattern: imaging and histological tissue characterization. J Am Coll Cardiol. 2015;65:315–323.
    1. Fernandez‐Jimenez R, Garcia‐Prieto J, Sanchez‐Gonzalez J, Aguero J, Lopez‐Martin GJ, Galan‐Arriola C, Molina‐Iracheta A, Doohan R, Fuster V, Ibanez B. Pathophysiology underlying the bimodal edema phenomenon after myocardial ischemia/reperfusion. J Am Coll Cardiol. 2015;66:816–828.
    1. Fishbein MC, Y‐Rit J, Lando U, Kanmatsuse K, Mercier JC, Ganz W. The relationship of vascular injury and myocardial hemorrhage to necrosis after reperfusion. Circulation. 1980;62:1274–1279.
    1. Alvarez‐Sabin J, Maisterra O, Santamarina E, Kase CS. Factors influencing haemorrhagic transformation in ischaemic stroke. Lancet Neurol. 2013;12:689–705.
    1. Anzalone N, Scotti R, Riva R. Neuroradiologic differential diagnosis of cerebral intraparenchymal hemorrhage. J Neurol Sci. 2004;25(suppl 1):S3–S5.
    1. Payne AR, Berry C, Kellman P, Anderson R, Hsu LY, Chen MY, McPhaden AR, Watkins S, Schenke W, Wright V, Lederman RJ, Aletras AH, Arai AE. Bright‐blood T(2)‐weighted MRI has high diagnostic accuracy for myocardial hemorrhage in myocardial infarction: a preclinical validation study in swine. Circ Cardiovasc Imaging. 2011;4:738–745.
    1. Windecker S, Kolh P, Alfonso F, Collet JP, Cremer J, Falk V, Filippatos G, Hamm C, Head SJ, Juni P, Kappetein AP, Kastrati A, Knuuti J, Landmesser U, Laufer G, Neumann FJ, Richter DJ, Schauerte P, Sousa Uva M, Stefanini GG, Taggart DP, Torracca L, Valgimigli M, Wijns W, Witkowski A. 2014 ESC/EACTS guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio‐Thoracic Surgery (EACTS). Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014;35:2541–2619.
    1. Steg PG, James SK, Atar D, Badano LP, Blomstrom‐Lundqvist C, Borger MA, Di Mario C, Dickstein K, Ducrocq G, Fernandez‐Aviles F, Gershlick AH, Giannuzzi P, Halvorsen S, Huber K, Juni P, Kastrati A, Knuuti J, Lenzen MJ, Mahaffey KW, Valgimigli M, van ‘t Hof A, Widimsky P, Zahger D. ESC guidelines for the management of acute myocardial infarction in patients presenting with ST‐segment elevation. Eur Heart J. 2012;33:2569–2619.
    1. Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E. Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson. 2013;15:91.
    1. Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, Gatehouse PD, Arai AE, Friedrich MG, Neubauer S, Schulz‐Menger J, Schelbert EB; Society for Cardiovascular Magnetic Resonance I and Cardiovascular Magnetic Resonance Working Group of the European Society of C . Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson. 2013;15:92.
    1. Carrick D, Haig C, Rauhalammi S, Ahmed N, Mordi I, McEntegart M, Petrie MC, Eteiba H, Hood S, Watkins S, Lindsay M, Mahrous A, Ford I, Tzemos N, Sattar N, Welsh P, Radjenovic A, Oldroyd KG, Berry C. Prognostic significance of infarct core pathology revealed by quantitative non‐contrast in comparison with contrast cardiac magnetic resonance imaging in reperfused ST‐elevation myocardial infarction survivors. Eur Heart J. 2015;doi: [Epub ahead of print].
    1. Carrick D, Haig C, Rauhalammi S, Ahmed N, Mordi I, McEntegart M, Petrie MC, Eteiba H, Lindsay M, Watkins S, Hood S, Davie A, Mahrous A, Sattar N, Welsh P, Tzemos N, Radjenovic A, Ford I, Oldroyd KG, Berry C. Pathophysiology of LV remodeling in survivors of STEMI: inflammation, remote myocardium, and prognosis. JACC Cardiovasc Imaging. 2015;8:779–789.
    1. Giri S, Chung YC, Merchant A, Mihai G, Rajagopalan S, Raman SV, Simonetti OP. T2 quantification for improved detection of myocardial edema. J Cardiovasc Magn Reson. 2009;11:56.
    1. Verhaert D, Thavendiranathan P, Giri S, Mihai G, Rajagopalan S, Simonetti OP, Raman SV. Direct T2 quantification of myocardial edema in acute ischemic injury. JACC Cardiovasc Imaging. 2011;4:269–278.
    1. Kellman P, Arai AE, McVeigh ER, Aletras AH. Phase‐sensitive inversion recovery for detecting myocardial infarction using gadolinium‐delayed hyperenhancement. Magn Reson Med. 2002;47:372–383.
    1. Wassmuth R, Prothmann M, Utz W, Dieringer M, von Knobelsdorff‐Brenkenhoff F, Greiser A, Schulz‐Menger J. Variability and homogeneity of cardiovascular magnetic resonance myocardial T2‐mapping in volunteers compared to patients with edema. J Cardiovasc Magn Reson. 2013;15:27.
    1. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105:539–542.
    1. Ghugre NR, Ramanan V, Pop M, Yang Y, Barry J, Qiang B, Connelly KA, Dick AJ, Wright GA. Quantitative tracking of edema, hemorrhage, and microvascular obstruction in subacute myocardial infarction in a porcine model by MRI. Magn Reson Med. 2011;66:1129–1141.
    1. Kandler D, Lucke C, Grothoff M, Andres C, Lehmkuhl L, Nitzsche S, Riese F, Mende M, de Waha S, Desch S, Lurz P, Eitel I, Gutberlet M. The relation between hypointense core, microvascular obstruction and intramyocardial haemorrhage in acute reperfused myocardial infarction assessed by cardiac magnetic resonance imaging. Eur Radiol. 2014;24:3277–3288.
    1. O'Regan DP, Ariff B, Neuwirth C, Tan Y, Durighel G, Cook SA. Assessment of severe reperfusion injury with T2* cardiac MRI in patients with acute myocardial infarction. Heart. 2010;96:1885–1891.
    1. Anderson LJ, Holden S, Davis B, Prescott E, Charrier CC, Bunce NH, Firmin DN, Wonke B, Porter J, Walker JM, Pennell DJ. Cardiovascular T2‐star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J. 2001;22:2171–2179.
    1. Flett AS, Hasleton J, Cook C, Hausenloy D, Quarta G, Ariti C, Muthurangu V, Moon JC. Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance. JACC Cardiovasc Imaging. 2011;4:150–156.
    1. Eitel I, Desch S, Fuernau G, Hildebrand L, Gutberlet M, Schuler G, Thiele H. Prognostic significance and determinants of myocardial salvage assessed by cardiovascular magnetic resonance in acute reperfused myocardial infarction. J Am Coll Cardiol. 2010;55:2470–2479.
    1. Ugander M, Bagi PS, Oki AJ, Chen B, Hsu LY, Aletras AH, Shah S, Greiser A, Kellman P, Arai AE. Myocardial edema as detected by pre‐contrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction. JACC Cardiovasc Imaging. 2012;5:596–603.
    1. Payne AR, Casey M, McClure J, McGeoch R, Murphy A, Woodward R, Saul A, Bi X, Zuehlsdorff S, Oldroyd KG, Tzemos N, Berry C. Bright‐blood T2‐weighted MRI has higher diagnostic accuracy than dark‐blood short tau inversion recovery MRI for detection of acute myocardial infarction and for assessment of the ischemic area at risk and myocardial salvage. Circ Cardiovasc Imaging. 2011;4:210–219.
    1. Payne AR, Berry C, Doolin O, McEntegart M, Petrie MC, Lindsay MM, Hood S, Carrick D, Tzemos N, Weale P, McComb C, Foster J, Ford I, Oldroyd KG. Microvascular resistance predicts myocardial salvage and infarct characteristics in ST‐elevation myocardial infarction. J Am Heart Assoc. 2012;1:e002246 doi: .
    1. van Kranenburg M, Magro M, Thiele H, de Waha S, Eitel I, Cochet A, Cottin Y, Atar D, Buser P, Wu E, Lee D, Bodi V, Klug G, Metzler B, Delewi R, Bernhardt P, Rottbauer W, Boersma E, Zijlstra F, van Geuns RJ. Prognostic value of microvascular obstruction and infarct size, as measured by CMR in STEMI patients. JACC Cardiovasc Imaging. 2014;7:930–939.
    1. Zia MI, Ghugre NR, Connelly KA, Strauss BH, Sparkes JD, Dick AJ, Wright GA. Characterizing myocardial edema and hemorrhage using quantitative T2 and T2* mapping at multiple time intervals post ST‐segment elevation myocardial infarction. Circ Cardiovasc Imaging. 2012;5:566–572.
    1. Wilson RF, Laxson DD, Lesser JR, White CW. Intense microvascular constriction after angioplasty of acute thrombotic coronary arterial lesions. Lancet. 1989;1:807–811.
    1. Galiuto L. Optimal therapeutic strategies in the setting of post‐infarct no reflow: the need for a pathogenetic classification. Heart. 2004;90:123–125.
    1. Robbers LF, Eerenberg ES, Teunissen PF, Jansen MF, Hollander MR, Horrevoets AJ, Knaapen P, Nijveldt R, Heymans MW, Levi MM, van Rossum AC, Niessen HW, Marcu CB, Beek AM, van Royen N. Magnetic resonance imaging‐defined areas of microvascular obstruction after acute myocardial infarction represent microvascular destruction and haemorrhage. Eur Heart J. 2013;34:2346–2353.
    1. Beek AM, Nijveldt R, van Rossum AC. Intramyocardial hemorrhage and microvascular obstruction after primary percutaneous coronary intervention. Int J Cardiovasc Imaging. 2010;26:49–55.
    1. Kidambi A, Mather AN, Motwani M, Swoboda P, Uddin A, Greenwood JP, Plein S. The effect of microvascular obstruction and intramyocardial hemorrhage on contractile recovery in reperfused myocardial infarction: insights from cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2013;15:58.
    1. Bradley WG Jr. MR appearance of hemorrhage in the brain. Radiology. 1993;189:15–26.

Source: PubMed

Подписаться